We consider a system of N bosons in a unitary box in the grand-canonical setting interacting through a potential with the scattering length scaling as N−1+κ, κ ∈ (0, 2/3). This regimes interpolate between the Gross–Pitaevskii regime (κ = 0) and the thermodynamic limit (κ = 2/3). In the work of Basti et al. [Forum Math., Sigma 9, E74 (2021)], as an intermediate step to prove an upper bound in agreement with the Lee–Huang–Yang formula in the thermodynamic limit, a second order upper bound on the ground state energy for κ < 5/9 was obtained. In this paper, thanks to a more careful analysis of the error terms, we extend the mentioned result to κ < 7/12.

1.
T. D.
Lee
,
K.
Huang
, and
C. N.
Yang
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
,
1135
1145
(
1957
).
2.
N. N.
Bogoliubov
, “
On the theory of superfluidity
,”
Izv. Akad. Nauk USSR
11
,
77
(
1947
);
N. N.
Bogoliubov
,
J. Phys. (USSR)
11
,
23
(
1947
).
3.
F. J.
Dyson
, “
Ground-state energy of a hard-sphere gas
,”
Phys. Rev.
106
,
20
26
(
1957
).
4.
E. H.
Lieb
and
J.
Yngvason
, “
Ground state energy of the low density Bose gas
,”
Phys. Rev. Lett.
80
,
2504
2507
(
1998
).
5.
H.-T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground state energy of a Bose gas
,”
J. Stat. Phys.
136
(
3
),
453
503
(
2009
).
6.
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Ground-state energy of a low-density Bose gas: A second order upper bound
,”
Phys. Rev. A
78
,
053627
(
2008
).
7.
G.
Basti
,
S.
Cenatiempo
, and
B.
Schlein
, “
A new second order upper bound for the ground state energy of dilute Bose gases
,”
Forum Math., Sigma
9
,
E74
(
2021
).
8.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases
,”
Ann. Math.
192
(
3
),
893
976
(
2020
).
9.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.
10.
K.
Huang
and
C. N.
Yang
, “
Quantum-mechanical many-body problem with hard-sphere interaction
,”
Phys. Rev.
105
,
767
775
(
1957
).
11.
E. H.
Lieb
,
R.
Seiringer
, and
J. P.
Solovej
, “
Ground-state energy of the low-density Fermi gas
,”
Phys. Rev. A
71
,
053605
(
2005
).
12.
M.
Falconi
,
E. L.
Giacomelli
,
C.
Hainzl
, and
M.
Porta
, “
The dilute fermi gas via Bogoliubov theory
,”
Ann. Henri Poincaré
22
,
2283
2353
(
2021
).
13.
D. W.
Robinson
,
The Thermodynamic Pressure in Quantum Statistical Mechanics
, Lecture Notes in Physics Vol. 9 (
Springer-Verlag, Berlin-New-York
,
1971
), pp.
42
74
.
14.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
The Bogoliubov free energy functional I: Existence of minimizers and phase diagrams
,”
Arch. Ration. Mech. Anal.
229
(
3
),
1037
1090
(
2018
).
15.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime
,”
Commun. Math. Phys.
376
,
1311
1395
(
2020
).
16.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross–Pitaevskii limit
,”
Acta Math.
222
(
2
),
219335
(
2019
).
17.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,”
Phys. Rev. A
61
,
043602
(
2000
).
18.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,”
Anal. PDE
9
(
2
),
459
485
(
2016
).
19.
P. T.
Nam
and
A.
Triay
, “
Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime
,” arXiv:2106.11949.
20.
C.
Hainzl
,
B.
Schlein
, and
A.
Triay
, “
Bogoliubov theory in the Gross-Pitaevskii limit: A simplified approach
,” arXiv:2203.03440.
21.
G.
Basti
,
S.
Cenatiempo
,
A.
Olgiati
,
G.
Pasqualetti
, and
B.
Schlein
, “
A second order upper bound for the ground state energy of a hard-sphere gas in the Gross-Pitaevskii regime
,” arXiv:2203.11917.
22.
G.
Basti
,
S.
Cenatiempo
,
A.
Olgiati
,
G.
Pasqualetti
, and
B.
Schlein
, “
Ground state energy of a Bose gas in the Gross–Pitaevskii regime
,”
J. Math. Phys.
63
,
041101
(
2022
).
23.
C.
Brennecke
,
M.
Caporaletti
, and
B.
Schlein
, “
Excitation spectrum for Bose gases beyond the Gross-Pitaevskii regime
,”
Rev. Math. Phys.
(published online, 2022)..
24.
A.
Adhikari
,
C.
Brennecke
, and
B.
Schlein
, “
Bose–Einstein condensation beyond the Gross–Pitaevskii regime
,”
Ann. Henri Poincaré
22
,
1163
1233
(
2021
).
25.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
26.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
(
2
),
505
537
(
2006
).
27.
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (
Birkhäuser Verlag
,
2005
).
28.
S.
Fournais
, “
Length scales for BEC in the dilute Bose gas
,” in
Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume, EMS Series of Congress Reports
edited by
P.
Exner
,
R. L.
Frank
,
F.
Gesztesy
,
H.
Holden
and
T.
Weidl
(
EMS Press, Berlin
,
2021
), Vol. 18 pp.
115
133
..
29.
D.
Dimonte
and
E. L.
Giacomelli
, “
On Bose-Einstein condensates in the Thomas-Fermi regime
,” arXiv:2112.02343.
30.
G.
Benfatto
, “
Renormalization group approach to zero temperature Bose condensation
,” in
Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics. Lecture Notes in Physics
(
Springer, Berlin
,
Heidelberg
,
1995
), Vol. 446 pp.
219
247
.
31.
T.
Balaban
,
J.
Feldman
,
H.
Knörrer
, and
E.
Trubowitz
, “
Complex bosonic many-body models: Overview of the small field parabolic flow
,”
Ann. Henri Poincaré
18
,
2873
2903
(
2017
).
You do not currently have access to this content.