We consider a system of N bosons in a unitary box in the grand-canonical setting interacting through a potential with the scattering length scaling as N−1+κ, κ ∈ (0, 2/3). This regimes interpolate between the Gross–Pitaevskii regime (κ = 0) and the thermodynamic limit (κ = 2/3). In the work of Basti et al. [Forum Math., Sigma 9, E74 (2021)], as an intermediate step to prove an upper bound in agreement with the Lee–Huang–Yang formula in the thermodynamic limit, a second order upper bound on the ground state energy for κ < 5/9 was obtained. In this paper, thanks to a more careful analysis of the error terms, we extend the mentioned result to κ < 7/12.
REFERENCES
1.
T. D.
Lee
, K.
Huang
, and C. N.
Yang
, “Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,” Phys. Rev.
106
, 1135
–1145
(1957
).2.
N. N.
Bogoliubov
, “On the theory of superfluidity
,” Izv. Akad. Nauk USSR
11
, 77
(1947
);3.
F. J.
Dyson
, “Ground-state energy of a hard-sphere gas
,” Phys. Rev.
106
, 20
–26
(1957
).4.
E. H.
Lieb
and J.
Yngvason
, “Ground state energy of the low density Bose gas
,” Phys. Rev. Lett.
80
, 2504
–2507
(1998
).5.
H.-T.
Yau
and J.
Yin
, “The second order upper bound for the ground state energy of a Bose gas
,” J. Stat. Phys.
136
(3
), 453
–503
(2009
).6.
L.
Erdős
, B.
Schlein
, and H.-T.
Yau
, “Ground-state energy of a low-density Bose gas: A second order upper bound
,” Phys. Rev. A
78
, 053627
(2008
).7.
G.
Basti
, S.
Cenatiempo
, and B.
Schlein
, “A new second order upper bound for the ground state energy of dilute Bose gases
,” Forum Math., Sigma
9
, E74
(2021
).8.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases
,” Ann. Math.
192
(3
), 893
–976
(2020
).9.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.10.
K.
Huang
and C. N.
Yang
, “Quantum-mechanical many-body problem with hard-sphere interaction
,” Phys. Rev.
105
, 767
–775
(1957
).11.
E. H.
Lieb
, R.
Seiringer
, and J. P.
Solovej
, “Ground-state energy of the low-density Fermi gas
,” Phys. Rev. A
71
, 053605
(2005
).12.
M.
Falconi
, E. L.
Giacomelli
, C.
Hainzl
, and M.
Porta
, “The dilute fermi gas via Bogoliubov theory
,” Ann. Henri Poincaré
22
, 2283
–2353
(2021
).13.
D. W.
Robinson
, The Thermodynamic Pressure in Quantum Statistical Mechanics
, Lecture Notes in Physics Vol. 9 (Springer-Verlag, Berlin-New-York
, 1971
), pp. 42
–74
.14.
M.
Napiórkowski
, R.
Reuvers
, and J. P.
Solovej
, “The Bogoliubov free energy functional I: Existence of minimizers and phase diagrams
,” Arch. Ration. Mech. Anal.
229
(3
), 1037
–1090
(2018
).15.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime
,” Commun. Math. Phys.
376
, 1311
–1395
(2020
).16.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Bogoliubov theory in the Gross–Pitaevskii limit
,” Acta Math.
222
(2
), 219335
(2019
).17.
E. H.
Lieb
, R.
Seiringer
, and J.
Yngvason
, “Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,” Phys. Rev. A
61
, 043602
(2000
).18.
P. T.
Nam
, N.
Rougerie
, and R.
Seiringer
, “Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,” Anal. PDE
9
(2
), 459
–485
(2016
).19.
P. T.
Nam
and A.
Triay
, “Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime
,” arXiv:2106.11949.20.
C.
Hainzl
, B.
Schlein
, and A.
Triay
, “Bogoliubov theory in the Gross-Pitaevskii limit: A simplified approach
,” arXiv:2203.03440.21.
G.
Basti
, S.
Cenatiempo
, A.
Olgiati
, G.
Pasqualetti
, and B.
Schlein
, “A second order upper bound for the ground state energy of a hard-sphere gas in the Gross-Pitaevskii regime
,” arXiv:2203.11917.22.
G.
Basti
, S.
Cenatiempo
, A.
Olgiati
, G.
Pasqualetti
, and B.
Schlein
, “Ground state energy of a Bose gas in the Gross–Pitaevskii regime
,” J. Math. Phys.
63
, 041101
(2022
).23.
C.
Brennecke
, M.
Caporaletti
, and B.
Schlein
, “Excitation spectrum for Bose gases beyond the Gross-Pitaevskii regime
,” Rev. Math. Phys.
(published online, 2022)..24.
A.
Adhikari
, C.
Brennecke
, and B.
Schlein
, “Bose–Einstein condensation beyond the Gross–Pitaevskii regime
,” Ann. Henri Poincaré
22
, 1163
–1233
(2021
).25.
E. H.
Lieb
and R.
Seiringer
, “Proof of Bose-Einstein condensation for dilute trapped gases
,” Phys. Rev. Lett.
88
, 170409
(2002
).26.
E. H.
Lieb
and R.
Seiringer
, “Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,” Commun. Math. Phys.
264
(2
), 505
–537
(2006
).27.
E. H.
Lieb
, R.
Seiringer
, J. P.
Solovej
, and J.
Yngvason
, The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (Birkhäuser Verlag
, 2005
).28.
S.
Fournais
, “Length scales for BEC in the dilute Bose gas
,” in Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume, EMS Series of Congress Reports
edited by P.
Exner
, R. L.
Frank
, F.
Gesztesy
, H.
Holden
and T.
Weidl
(EMS Press, Berlin
, 2021
), Vol. 18 pp. 115
–133
..29.
D.
Dimonte
and E. L.
Giacomelli
, “On Bose-Einstein condensates in the Thomas-Fermi regime
,” arXiv:2112.02343.30.
G.
Benfatto
, “Renormalization group approach to zero temperature Bose condensation
,” in Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics. Lecture Notes in Physics
(Springer, Berlin
, Heidelberg
, 1995
), Vol. 446 pp. 219
–247
. 31.
T.
Balaban
, J.
Feldman
, H.
Knörrer
, and E.
Trubowitz
, “Complex bosonic many-body models: Overview of the small field parabolic flow
,” Ann. Henri Poincaré
18
, 2873
–2903
(2017
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.