We introduce several definitions within the framework of vertex and conformal algebras that are analogous to some important concepts of the classical Lie theory. Most importantly, we define formal vertex laws, which correspond to the notion of formal group laws. We prove suitable vertex/conformal versions of a number of classical results, such as the Milnor–Moore theorem, Cartier duality, and the equivalence between formal group laws and Lie algebras.

1.
R. E.
Borcherds
,
Proc. Natl. Acad. Sci. U. S. A.
83
,
3068
(
1986
).
2.
V.
Kac
,
Vertex Algebras for Beginners
, University Lecture Series Vol. 10, 2nd ed. (
American Mathematical Society
,
1999
).
3.
A.
Beilinson
and
V.
Drinfeld
,
Chiral Algebras
(
AMS Colloquium Publications
,
2004
), Vol. 51.
4.
B.
Bakalov
and
V.
Kac
,
Int. Math. Res. Not.
2003
,
123
.
5.
S.
Montgomery
,
Hopf Algebras and Their Actions on Rings
, CBMS Regional Conference Series in Mathematics Vol. 82 (
American Mathematical Society
,
1993
).
6.
J. P.
Serre
,
Lie Algebras and Lie Groups
(
Springer-Verlag Berlin Heidelberg
,
1992
).
7.
J.
Dieudonné
,
Introduction to the Theory of Formal Groups
(
CRC Press
,
1973
).
8.
M.
Hazewinkel
,
Formal Groups and Applications
(
Academic Press
,
1978
).
9.
H.
Li
,
Commun. Contemp. Math.
09
,
605
(
2007
).
10.
K.
Hubbard
,
J. Pure Appl. Algebra
213
,
109
(
2009
).
11.
K.
Hubbard
,
Contemp. Math.
442
,
339
(
2007
).
12.
J.
Lepowsky
and
H.
Li
,
Introduction to Vertex Operator Algebras and Their Representations
, Progress in Mathematics Vol. 227 (
Birkhauser
,
2004
).
13.
A. D.
Sole
and
V. G.
Kac
,
Commun. Math. Phys.
254
,
659
(
2005
).
You do not currently have access to this content.