We investigate the properties of self-adjointness of a two-dimensional Dirac operator on an infinite sector with infinite mass boundary conditions and in the presence of a Coulomb-type potential with the singularity placed on the vertex. In the general case, we prove the appropriate Dirac–Hardy inequality and exploit the Kato–Rellich theory. In the explicit case of a Coulomb potential, we describe the self-adjoint extensions for all the intensities of the potential relying on a radial decomposition in partial wave subspaces adapted to the infinite-mass boundary conditions. Finally, we integrate our results, giving a description of the spectrum of these operators.
REFERENCES
1.
P.
Dirac
, “The quantum theory of the electron
,” Proc. R. Soc. London, Ser. A
117
(778
), 610
–624
(1928
).2.
B.
Thaller
, The Dirac Equation
, Texts and Monographs in Physics (Springer-Verlag
, Berlin
, 1992
).3.
T. O.
Wehling
, A. M.
Black-Schaffer
, and A. V.
Balatsky
, “Dirac materials
,” Adv. Phys.
63
(1
), 1
–76
(2014
).4.
N.
Arrizabalaga
, L.
Le Treust
, A.
Mas
, and N.
Raymond
, “The MIT Bag Model as an infinite mass limit
,” J. Ec. Polytech.
6
, 329
–365
(2019
).5.
E.
Stockmeyer
and S.
Vugalter
, “Infinite mass boundary conditions for Dirac operators
,” J. Spectral Theory
9
(2
), 569
–600
(2018
).6.
R. D.
Benguria
, S.
Fournais
, E.
Stockmeyer
, and H.
Van Den Bosch
, “Self-adjointness of two-dimensional Dirac operators on domains
,” Ann. Henri Poincare
18
, 1371
–1383
(2017
).7.
L.
Le Treust
and T.
Ourmières-Bonafos
, “Self-adjointness of Dirac operators with infinite mass boundary conditions in sectors
,” Ann. Henri Poincare
19
, 1465
–1487
(2018
).8.
F.
Pizzichillo
and H.
Van Den Bosch
, “Self-adjointness of two dimensional Dirac operators on corner domains
,” J. Spec. Theory
11
(3
), 1043
–1079
(2021
).9.
B.
Cassano
and V.
Lotoreichik
, “Self-adjoint extensions of the two-valley Dirac operator with discontinuous infinite mass boundary conditions
,” Oper. Matrices
14
(3
), 667
–678
(2020
).10.
B.
Cassano
and V.
Lotoreichik
, “Self-adjointness for the MIT bag model on an unbounded cone
,” arXiv:2201.08192 (2022
).11.
N.
Arrizabalaga
, A.
Mas
, and L.
Vega
, “Shell interactions for Dirac operators
,” J. Math. Pures Appl.
102
, 617
–639
(2014
).12.
N.
Arrizabalaga
, A.
Mas
, and L.
Vega
, “Shell interactions for Dirac operators: On the point spectrum and the confinement
,” SIAM J. Math. Anal.
47
(2
), 1044
–1069
(2015
).13.
N.
Arrizabalaga
, A.
Mas
, and L.
Vega
, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators
,” Commun. Math. Phys.
344
, 483
–505
(2016
).14.
J.
Behrndt
, M.
Holzmann
, C.
Stelzer
, and G.
Stenzel
, “A class of singular perturbations of the Dirac operator: Boundary triplets and Weyl functions
,” Acta Wasaensia
462
, 15
–36
(2021
), Festschrift in honor of S. Hassi.15.
J.
Behrndt
, P.
Exner
, M.
Holzmann
, and V.
Lotoreichik
, “On the spectral properties of Dirac operators with electrostatic δ-shell interactions
,” J. Math. Pures Appl.
111
, 47
–78
(2018
).16.
M.
Holzmann
, T.
Ourmières-Bonafos
, and K.
Pankrashkin
, “Dirac operators with Lorentz scalar shell interactions
,” Rev. Math. Phys.
30
, 1850013
(2018
).17.
T.
Ourmières-Bonafos
and L.
Vega
, “A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and δ-shell interactions
,” Publ. Mat.
62
(2
), 397
–437
(2018
).18.
J.
Behrndt
, P.
Exner
, M.
Holzmann
, and V.
Lotoreichik
, “On Dirac operators in with electrostatic and Lorentz scalar δ-shell interactions
,” Quantum Stud.: Math. Found.
6
, 295
–314
(2019
).19.
T.
Ourmières-Bonafos
and F.
Pizzichillo
, “Dirac operators and shell interactions: A survey
,” in Mathematical Challenges of Zero-Range Physics
(Springer
, Cham
, 2021
), pp. 105
–131
.20.
B.
Cassano
, V.
Lotoreichik
, A.
Mas
, and M.
Tušek
, “General δ-shell interactions for the two-dimensional Dirac operator: Self-adjointness and approximation
,” Rev. Mat. Iberoam. (to be published), arXiv:2102.09988 (2021
).21.
B.
Benhellal
, “Spectral analysis of Dirac operators with delta interactions supported on the boundaries of rough domains
,” J. Math. Phys.
63
(1
), 011507
(2022
).22.
D.
Frymark
and V.
Lotoreichik
, “Self-adjointness of the 2D Dirac operator with singular interactions supported on star-graphs
,” Ann. Henri Poincaré (to be published), arXiv:2111.09617 (2021
).23.
K. S.
Novoselov
, A. K.
Geim
, S. V.
Morozov
et al, “Two-dimensional gas of massless Dirac fermions in graphene
,” Nature
438
, 197
–200
(2005
).24.
V. M.
Pereira
, V. N.
Kotov
, and A. H.
Castro Neto
, “Supercritical Coulomb impurities in gapped graphene
,” Phys. Rev. B
78
, 085101
(2008
).25.
A. V.
Shytov
, M. I.
Katsnelson
, and L. S.
Levitov
, “Vacuum polarization and screening of supercritical impurities in graphene
,” Phys. Rev. Lett.
99
, 236801
(2007
).26.
M. I.
Katsnelson
, “Nonlinear screening of charge impurities in graphene
,” Phys. Rev. B
74
, 201401(R)
(2006
).27.
B.
Cassano
and F.
Pizzichillo
, “Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials
,” Lett. Math. Phys.
108
, 2635
–2667
(2018
).28.
M.
Gallone
, “Self-adjoint extensions of Dirac operator with Coulomb potential
,” in Advances in Quantum Mechanics
, INdAM-Springer Series Vol. 18, edited by G.
Dell’ Antonio
and A.
Michelangeli
(Springer International Publishing
, 2017
), pp. 169
–185
.29.
M.
Esteban
, M.
Lewin
, and É.
Séré
, “Domains for Dirac-Coulomb min-max levels
,” Rev. Mat. Iberoam.
35
(3
), 877
–924
(2019
).30.
F.
Rellich
, Eigenwerttheorie Partieller Differentialgleichungen II
(Vorlesungsmanuskript
, Göttingen
, 1953
).31.
T.
Kato
, “Fundamental properties of Hamiltonian operators of Schrödinger type
,” Trans. Am. Math. Soc.
70
, 195
–211
(1951
).32.
U.-W.
Schmincke
, “Essential selfadjointness of Dirac operators with a strongly singular potential
,” Math. Z.
126
, 71
–81
(1972
).33.
G.
Nenciu
, “Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms
,” Commun. Math. Phys.
48
, 235
–247
(1976
).34.
R.
Wüst
, “Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials
,” Math. Z.
141
, 93
–98
(1975
).35.
M.
Klaus
and R.
Wüst
, “Characterization and uniqueness of distinguished self-adjoint extensions of Dirac operators
,” Commun. Math. Phys.
64
, 171
–176
(1979
).36.
M. J.
Esteban
and M.
Loss
, “Self-adjointness for Dirac operators via Hardy-Dirac inequalities
,” J. Math. Phys.
48
(11
), 112107
(2007
).37.
M.
Gallone
and A.
Michelangeli
, “Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei
,” Anal. Math. Phys.
9
, 585
–616
(2019
).38.
H.
Hogreve
, “The overcritical Dirac–Coulomb operator
,” J. Phys. A: Math. Theor.
46
, 025301
(2013
).39.
B.
Cassano
and F.
Pizzichillo
, “Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations
,” J. Math. Phys.
60
, 041502
(2019
).40.
J.
Derezińsky
and B.
Ruba
, “Holomorphic family of Dirac-Coulomb Hamiltonians in arbitrary dimension
,” arXiv:2107.03785.41.
J. C.
Cuenin
and H.
Siedentop
, “Dipoles in graphene have infinitely many bound states
,” J. Math. Phys.
55
, 122304
(2014
).42.
D.-A.
Deckert
and M.
Oelker
, “Distinguished self-adjoint extension of the two-body Dirac operator with Coulomb interaction
,” Ann. Henri Poincare
20
, 2407
–2445
(2019
).43.
M. J.
Esteban
, M.
Lewin
, and E.
Séré
, “Dirac-Coulomb operators with general charge distribution. I. Distinguished extension and min-max formulas
,” Ann. H. Lebesgue
4
, 1421
–1456
(2021
).44.
U.-W.
Schmincke
, “Distinguished self-adjoint extensions of Dirac operators
,” Math. Z.
129
, 335
–349
(1972
).45.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics. II. Fourier Snalysis, Self-Adjointness
(Academic Press
, New York, London
, 1978
).46.
B.
Cassano
, F.
Pizzichillo
, and L.
Vega
, “A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator
,” Rev. Mat. Complutense
33
(1
), 1
–18
(2020
).47.
P.
Grisvard
, Elliptic Problems in Nonsmooth Domains
, Classics in Applied Mathematics Vol. 69 [Society for Industrial and Applied Mathematics (SIAM)
, Philadelphia, PA
, 2011
], Reprint of the 1985 original (MR0775683), With a foreword by S. C. Brenner.48.
M.
Gallone
and A.
Michelangeli
, “Discrete spectra for critical Dirac-Coulomb Hamiltonians
,” J. Math. Phys.
59
, 062108
(2018
).49.
M.
Gallone
and A.
Michelangeli
, “Self-adjoint extension schemes and modern applications to quantum Hamiltonians
,” arXiv:2201.10205.50.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics. IV. Analysis of Operators
(Academic Press
, New York, London
, 1978
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.