Within the setting of infinite-dimensional self-dual CAR C* algebras describing fermions in the Zd lattice, we depart from the well-known Araki–Evans σ(P1,P2)Z2 index for quasi-free fermion states and rewrite it in terms of states rather than in terms of basis projections. Furthermore, we reformulate results that relate equivalences of Fock representations to the index parity into results that relate equivalences of Gel’fand–Naimark–Segal representations and the associated index parity.

1.
D. E.
Evans
and
Y.
Kawahigashi
,
Quantum Symmetries on Operator Algebras
, Oxford Mathematical Monographs (
Clarendon Press
,
1998
), ISSN: 0964-9174.
2.
J.
Gracia-Bondía
,
J. C.
Várilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
, Birkhäuser Advanced Texts Basler Lehrbücher (
Birkhäuser
,
2001
).
3.
N. J. B.
Aza
,
A. F.
Reyes-Lega
, and
L. A. M.
Sequera
, “
A Z2-topological index for quasi-free fermions
,”
Math. Phys., Anal. Geom.
25
,
11
(
2022
).
4.
Y.
Ogata
, “
Classification of symmetry protected topological phases in quantum spin chains
,” arXiv:2110.04671 (
2021
).
5.
Y.
Ogata
, “
Classification of gapped ground state phases in quantum spin systems
,” arXiv:2110.04675 (
2021
).
6.
H.
Araki
, “
Bogoliubov automorphisms and Fock representations of canonical anticommutation relations
,”
Contemp. Math
62
,
23
141
(
1987
).
7.
N. J. B.
Aza
,
L. C. P. A. M.
Müssnich
, and
A. F.
Reyes-Lega
, “
A Z2 topological index for interacting fermions systems
” (Unpublished).
8.
B.
Nachtergaele
,
R.
Sims
, and
A.
Young
, “
Quasi–locality bounds for quantum lattice systems. Part II. Perturbations of frustration–free spin models with gapped ground states
,”
Ann. Henri Poincare
23
,
393
(
2021
).
9.
N. J. B.
Aza
,
J.-B.
Bru
,
W. d. S.
Pedra
, and
L. C. P. A. M.
Müssnich
, “
Large deviations in weakly interacting fermions: Generating functions as Gaussian Berezin integrals and bounds on large Pfaffians
,”
Rev. Math. Phys.
34
,
2150034
(
2021
).
10.
H.
Araki
, “
On quasifree states of CAR and Bogoliubov automorphisms
,”
Publ. Res. Inst. Math. Sci.
6
,
385
442
(
1970
).
11.
S.
Attal
,
A.
Joye
, and
C.
Pillet
,
Open Quantum Systems I: The Hamiltonian Approach
, Lecture Notes in Mathematics (
Springer
,
2006
).
12.
H.
Araki
, “
On the diagonalization of a bilinear Hamiltonian by a Bogoliubov transformation
,”
Publ. Res. Inst. Math. Sci.
4
,
387
412
(
1968
).
13.
H.
Araki
and
D. E.
Evans
, “
On a C*-algebra approach to phase transition in the two-dimensional Ising model
,”
Commun. Math. Phys.
91
,
489
503
(
1983
).
14.
S.
Sachdev
,
Quantum Phase Transitions
, 2nd ed. (
Cambridge
,
2011
).
15.
K.
Landsman
, “
Spontaneous symmetry breaking
,” in
Foundations of Quantum Theory: From Classical Concepts to Operator Algebras
(
Springer International Publishing
,
Cham
,
2017
), pp.
367
433
.
16.
A. Y.
Kitaev
, “
Unpaired Majorana fermions in quantum wires
,”
Phys.-Usp.
44
,
131
(
2001
).
17.
A.
Kitaev
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
30
(
2009
).
18.
S.
Lang
,
Algebra
, 3rd ed., Graduate Texts in Mathematics Vol. 211 (
Springer
,
New York
,
2002
).
19.
O.
Bratteli
and
D.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 1: C*– and W*–Algebras. Symmetry Groups. Decomposition of States
, 2nd ed. (
Springer
,
2003
).
You do not currently have access to this content.