The relation between Wilson and para-Racah polynomials and representations of the degenerate rational Sklyanin algebra is established. Second-order Heun operators on quadratic grids with no diagonal terms are determined. These special or S-Heun operators lead to the rational degeneration of the Sklyanin algebra; they also entail the contiguity and structure operators of the Wilson polynomials. The finite-dimensional restriction yields a representation that acts on the para-Racah polynomials.

1.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras
,”
Funct. Anal. Appl.
17
(
4
),
273
284
(
1984
).
2.
S. P.
Smith
, “
The four-dimensional Sklyanin algebras
,”
K-Theory
8
(
1
),
65
80
(
1994
).
3.
C.
Walton
, “
Representation theory of three-dimensional Sklyanin algebras
,”
Nucl. Phys. B
860
(
1
),
167
185
(
2012
).
4.
N.
Iyudu
and
S.
Shkarin
, “
Three dimensional Sklyanin algebras and Gröbner bases
,”
J. Algebra
470
,
379
419
(
2017
).
5.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Algebraic Heun operator and band-time limiting
,”
Commun. Math. Phys.
364
(
3
),
1041
1068
(
2018
).
6.
K.
Takemura
, “
On q-deformations of the Heun equation
,”
SIGMA
14
(
061
),
16
(
2018
).
7.
P.
Baseilhac
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Heun–Askey–Wilson algebra and the Heun operator of Askey–Wilson type
,”
Ann. Henri Poincaré
20
(
9
),
3091
3112
(
2019
).
8.
L.
Vinet
and
A.
Zhedanov
, “
The Heun operator of Hahn-type
,”
Proc. Am. Math. Soc.
147
(
7
),
2987
2998
(
2019
).
9.
N.
Crampé
,
L.
Vinet
, and
A.
Zhedanov
, “
Heun algebras of Lie type
,”
Proc. Am. Math. Soc.
148
(
3
),
1079
1094
(
2019
).
10.
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The rational Heun operator and Wilson biorthogonal functions
,”
Ramanujan J.
(
published online 2021
).
11.
P.
Baseilhac
,
L.
Vinet
, and
A.
Zhedanov
, “
The q-Heun operator of big q-Jacobi type and the q-Heun algebra
,”
Ramanujan J.
52
(
2
),
367
380
(
2020
).
12.
G.
Bergeron
,
N.
Crampé
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Heun–Racah and Heun–Bannai–Ito algebras
,”
J. Math. Phys.
61
(
8
),
081701
(
2020
).
13.
D.
Slepian
, “
Some comments on Fourier analysis, uncertainty and modeling
,”
SIAM Rev.
25
(
3
),
379
393
(
1983
).
14.
H. J.
Landau
, “
An overview of time and frequency limiting
,” in
Fourier Techniques and Applications
, edited by
J. F.
Price
(
Springer
,
Boston, MA
,
1985
), pp.
201
220
.
15.
G.
Bergeron
,
L.
Vinet
, and
A.
Zhedanov
, “
Signal processing, orthogonal polynomials, and Heun equations
,” in
Orthogonal Polynomials
, Tutorials, Schools, and Workshops in the Mathematical Sciences, edited by
M.
Foupouagnigni
and
W.
Koepf
(
Springer International Publishing
,
Cham
,
2020
), pp.
195
214
.
16.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Entanglement in fermionic chains and bispectrality
,”
Rev. Math. Phys.
33
(
07
),
2140001
(
2021
).
17.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Free-Fermion entanglement and orthogonal polynomials
,”
J. Stat. Mech.: Theory Exp.
2019
(
9
),
093101
.
18.
S.
Belliard
and
R. A.
Pimenta
, “
Modified algebraic Bethe ansatz for XXZ chain on the segment—II—General cases
,”
Nucl. Phys. B
894
,
527
552
(
2015
).
19.
P.
Baseilhac
and
R. A.
Pimenta
, “
Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
,”
Nucl. Phys. B
949
,
114824
(
2019
).
20.
J.
Gaboriaud
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
Degenerate Sklyanin algebras, Askey–Wilson polynomials and Heun operators
,”
J. Phys. A: Math. Theor.
53
(
44
),
445204
(
2020
).
21.
A. S.
Gorsky
and
A. V.
Zabrodin
, “
Degenerations of Sklyanin algebra and Askey-Wilson polynomials
,”
J. Phys. A: Math. Gen.
26
(
15
),
L635
L639
(
1993
).
22.
E. G.
Kalnins
and
W.
Miller
, “
Symmetry techniques for q-series: Askey-Wilson polynomials
,”
Rocky Mt. J. Math.
19
(
1
),
223
230
(
1989
).
23.
A. S.
Zhedanov
, “‘
Hidden symmetry’ of Askey-Wilson polynomials
,”
Theor. Math. Phys.
89
(
2
),
1146
1157
(
1991
).
24.
G.
Bergeron
,
J.
Gaboriaud
,
L.
Vinet
, and
A.
Zhedanov
, “
Sklyanin-like algebras for (q-)linear grids and (q-)para-Krawtchouk polynomials
,”
J. Math. Phys.
62
(
1
),
013505
(
2021
).
25.
P. B.
Wiegmann
and
A. X.
Zabrodin
, “
Algebraization of difference eigenvalue equations related to Uq(sl2)
,”
Nucl. Phys. B
451
(
3
),
699
724
(
1995
).
26.
A.
Smirnov
, “
Degenerate Sklyanin algebras
,”
Cent. Eur. J. Phys.
8
(
4
),
542
554
(
2010
).
27.
W.
Miller
, Jr.
, “
A note on Wilson polynomials
,”
SIAM J. Math. Anal.
18
(
5
),
1221
1226
(
1987
).
28.
J.-M.
Lemay
,
L.
Vinet
, and
A.
Zhedanov
, “
The para-Racah polynomials
,”
J. Math. Anal. Appl.
438
(
2
),
565
577
(
2016
).
29.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
,
Hypergeometric Orthogonal Polynomials and Their Q-Analogues
, Springer Monographs in Mathematics (
Springer
,
Berlin, Heidelberg
,
2010
).
30.
L.
Vinet
and
A.
Zhedanov
, “
Generalized Bochner theorem: Characterization of the Askey–Wilson polynomials
,”
J. Comput. Appl. Math.
211
(
1
),
45
56
(
2008
).
31.
Y. A.
Granovskii
and
A. S.
Zhedanov
, “
Nature of the symmetry group of the 6j-symbol
,”
J. Exp. Theor. Phys.
67
,
1982
1985
(
1988
).
32.
J. S.
Geronimo
and
P.
Iliev
, “
Bispectrality of multivariable Racah–Wilson polynomials
,”
Constr. Approximation
31
(
3
),
417
457
(
2010
).
33.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Superintegrability in two dimensions and the Racah–Wilson algebra
,”
Lett. Math. Phys.
104
(
8
),
931
952
(
2014
).
34.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonalization and the Heun equation
,”
J. Math. Phys.
58
(
3
),
031703
(
2017
).
35.
E. M.
Rains
, “
BCn-symmetric abelian functions
,”
Duke Math. J.
135
(
1
),
99
180
(
2006
).
36.
L.
Vinet
and
A.
Zhedanov
, “
Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer
,”
J. Phys. A: Math. Theor.
45
,
265304
(
2012
); arXiv:1110.6475.
You do not currently have access to this content.