In this paper, the commutative and spectral properties of a kth-order slant Hankel operator (k ≥ 2, a fixed integer) on the Lebesgue space of n-dimensional torus, Tn, where T is the unit circle, are studied. Characterizations for the commutativity and essential commutativity between higher order slant Hankel operators and slant Toeplitz operators have been obtained. The presence of an open disk in the point spectrum of a kth-order slant Hankel operator with a unimodular inducing function has also been ensured.

1.
R. A.
Martínez-Avendaño
, “
A generalization of Hankel operators
,”
J. Funct. Anal.
190
(
2
),
418
446
(
2002
).
2.
P.
Ma
,
F.
Yan
, and
D.
Zheng
, “
Zero, finite rank, and compact big truncated Hankel operators on model spaces
,”
Proc. Am. Math. Soc.
146
,
5235
5242
(
2018
).
3.
V. V.
Peller
,
Hankel Operators and Their Applications
, Springer Monographs in Mathematics (
Springer
,
New York
,
2003
).
4.
K.
Tanaka
and
S.
Yamaji
, “
Essential norm estimates for little Hankel operators with anti holomorphic symbols on weighted Bergman spaces of the unit ball
,”
Anal. Math.
45
,
841
853
(
2019
).
5.
L.
Xiaofen
and
H.
Zhangjian
, “
On Hankel operators between Fock spaces
,”
Banach J. Math. Anal.
14
,
871
893
(
2020
).
6.
K.
Zhu
, “
Duality and Hankel operators on the Bergman spaces of bounded symmetric domains
,”
J. Funct. Anal.
81
(
2
),
260
278
(
1988
).
7.
R. E.
Curto
,
S. H.
Lee
, and
J.
Yoon
, “
Completion of Hankel partial contractions of extremal type
,”
J. Math. Phys.
53
(
12
),
123526
(
2012
).
8.
R. M.
Gray
and
L. D.
Davisson
,
An Introduction to Statistical Signal Processing
(
Cambridge University Press
,
London
,
2005
).
9.
A.
Gombani
, “
On the Schmidt pairs of multivariable Hankel operators and robust control
,”
Linear Algebra Appl.
223–224
,
243
265
(
1995
).
10.
S.
Al-Homidan
, “
Hankel matrix transforms and operators
,”
J. Inequalities Appl.
2012
,
92
.
11.
S. C.
Arora
,
R.
Batra
, and
M. P.
Singh
, “
Slant Hankel operators
,”
Arch. Math.
42
,
125
133
(
2006
).
12.
M. C.
Ho
, “
Properties of slant Toeplitz operators
,”
Indiana Univ. Math. J.
45
,
843
862
(
1996
).
13.
P.
Ahern
,
E. H.
Youssfi
, and
K.
Zhu
, “
Compactness of Hankel operators on Hardy-Sobolev spaces of the polydisk
,”
J. Oper. Theory
61
(
2
),
301
312
(
2009
).
14.
X.
Ding
, “
Products of Toeplitz operators on the polydisk
,”
Integr. Equations Oper. Theory
45
(
4
),
389
403
(
2003
).
15.
G.
Datt
and
S. K.
Pandey
, “
Slant Toeplitz operators on Lebesgue space of n-dimensional torus
,”
Hokkaido Math. J.
49
,
363
389
(
2020
).
16.
G.
Datt
and
S.
Pandey
, “
Multivariate analogue of slant Toeplitz operators
,”
Hacettepe J. Math. Stat.
50
(
3
),
678
691
(
2021
).
17.
Y. F.
Lu
and
B.
Zhang
, “
Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk
,”
J. Math. Res. Expo.
30
(
2
),
205
216
(
2010
).
18.
G.
Datt
and
B. B.
Gupta
, “
Analogue of slant Hankel operators on the Lebesgue space of n-torus
,”
Adv. Oper. Theory
6
,
66
(
2021
).
You do not currently have access to this content.