In this paper, the commutative and spectral properties of a kth-order slant Hankel operator (k ≥ 2, a fixed integer) on the Lebesgue space of n-dimensional torus, , where is the unit circle, are studied. Characterizations for the commutativity and essential commutativity between higher order slant Hankel operators and slant Toeplitz operators have been obtained. The presence of an open disk in the point spectrum of a kth-order slant Hankel operator with a unimodular inducing function has also been ensured.
REFERENCES
1.
R. A.
Martínez-Avendaño
, “A generalization of Hankel operators
,” J. Funct. Anal.
190
(2
), 418
–446
(2002
).2.
P.
Ma
, F.
Yan
, and D.
Zheng
, “Zero, finite rank, and compact big truncated Hankel operators on model spaces
,” Proc. Am. Math. Soc.
146
, 5235
–5242
(2018
).3.
V. V.
Peller
, Hankel Operators and Their Applications
, Springer Monographs in Mathematics (Springer
, New York
, 2003
).4.
K.
Tanaka
and S.
Yamaji
, “Essential norm estimates for little Hankel operators with anti holomorphic symbols on weighted Bergman spaces of the unit ball
,” Anal. Math.
45
, 841
–853
(2019
).5.
L.
Xiaofen
and H.
Zhangjian
, “On Hankel operators between Fock spaces
,” Banach J. Math. Anal.
14
, 871
–893
(2020
).6.
K.
Zhu
, “Duality and Hankel operators on the Bergman spaces of bounded symmetric domains
,” J. Funct. Anal.
81
(2
), 260
–278
(1988
).7.
R. E.
Curto
, S. H.
Lee
, and J.
Yoon
, “Completion of Hankel partial contractions of extremal type
,” J. Math. Phys.
53
(12
), 123526
(2012
).8.
R. M.
Gray
and L. D.
Davisson
, An Introduction to Statistical Signal Processing
(Cambridge University Press
, London
, 2005
).9.
A.
Gombani
, “On the Schmidt pairs of multivariable Hankel operators and robust control
,” Linear Algebra Appl.
223–224
, 243
–265
(1995
).10.
S.
Al-Homidan
, “Hankel matrix transforms and operators
,” J. Inequalities Appl.
2012
, 92
.11.
S. C.
Arora
, R.
Batra
, and M. P.
Singh
, “Slant Hankel operators
,” Arch. Math.
42
, 125
–133
(2006
).12.
M. C.
Ho
, “Properties of slant Toeplitz operators
,” Indiana Univ. Math. J.
45
, 843
–862
(1996
).13.
P.
Ahern
, E. H.
Youssfi
, and K.
Zhu
, “Compactness of Hankel operators on Hardy-Sobolev spaces of the polydisk
,” J. Oper. Theory
61
(2
), 301
–312
(2009
).14.
X.
Ding
, “Products of Toeplitz operators on the polydisk
,” Integr. Equations Oper. Theory
45
(4
), 389
–403
(2003
).15.
G.
Datt
and S. K.
Pandey
, “Slant Toeplitz operators on Lebesgue space of n-dimensional torus
,” Hokkaido Math. J.
49
, 363
–389
(2020
).16.
G.
Datt
and S.
Pandey
, “Multivariate analogue of slant Toeplitz operators
,” Hacettepe J. Math. Stat.
50
(3
), 678
–691
(2021
).17.
Y. F.
Lu
and B.
Zhang
, “Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk
,” J. Math. Res. Expo.
30
(2
), 205
–216
(2010
).18.
G.
Datt
and B. B.
Gupta
, “Analogue of slant Hankel operators on the Lebesgue space of n-torus
,” Adv. Oper. Theory
6
, 66
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.