We review our recent study on the ground state energy of dilute Bose gases with three-body interactions. The main feature of our results is the emergence of the 3D energy-critical Schrödinger equation to describe the ground state energy of a Bose–Einstein condensate, where the nonlinearity strength is determined by a zero-scattering problem. Several open questions are also discussed.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapor
,”
Science
269
(
5221
),
198
201
(
1995
).
2.
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
3.
E. H.
Lieb
and
J.
Yngvason
, “
Ground state energy of the low density Bose gas
,”
Phys. Rev. Lett.
80
,
2504
2507
(
1998
).
4.
F. J.
Dyson
, “
Ground-state energy of a hard-sphere gas
,”
Phys. Rev.
106
,
20
26
(
1957
).
5.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional
,”
Phys. Rev. A
61
,
043602
(
2000
).
6.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose–Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
7.
D. S.
Petrov
, “
Three-body interacting bosons in free space
,”
Phys. Rev. Lett.
112
,
103201
(
2014
).
8.
A.
Hammond
,
L.
Lavoine
, and
T.
Bourdel
, “
Tunable three-body interactions in driven two-component Bose–Einstein condensates
,”
Phys. Rev. Lett.
128
(
8
),
083401
(
2022
).
9.
P. T.
Nam
,
J.
Ricaud
, and
A.
Triay
, “
The condensation of a trapped dilute Bose gas with three-body interactions
,” arXiv:2110.08195.
10.
P. T.
Nam
,
J.
Ricaud
, and
A.
Triay
, “
Ground state energy of the low density Bose gas with three-body interactions
,” arXiv:2201.13440.
11.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
World Scientific; Imperial College Press
,
Singapore; London
,
1999
).
12.
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (
Birkhäuser
,
2005
).
13.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross–Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
,
505
537
(
2006
).
14.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,”
Anal. PDE
9
,
459
485
(
2016
).
15.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases
,”
Trans. Am. Math. Soc.
369
,
6131
6157
(
2016
).
16.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross–Pitaevskii limit
,”
Acta Math.
222
,
219
335
(
2019
).
17.
C.
Brennecke
,
B.
Schlein
, and
S.
Schraven
, “
Bogoliubov theory for trapped bosons in the Gross–Pitaevskii regime
,”
Ann. Henri Poincaré
23
,
1583
1658
(
2022
).
18.
P. T.
Nam
and
A.
Triay
, “
Bogoliubov excitation spectrum of trapped Bose gases in the Gross–Pitaevskii regime
,” arXiv:2106.11949.
19.
M.
Lewin
,
P. T.
Nam
,
S.
Serfaty
, and
J. P.
Solovej
, “
Bogoliubov spectrum of interacting Bose gases
,”
Commun. Pure Appl. Math.
68
,
413
471
(
2015
).
20.
R. N.
Bisset
and
P. B.
Blakie
, “
Crystallization of a dilute atomic dipolar condensate
,”
Phys. Rev. A
92
,
061603
(
2015
).
21.
P. B.
Blakie
, “
Properties of a dipolar condensate with three-body interactions
,”
Phys. Rev. A
93
,
033644
(
2016
).
22.
M.
Lewin
and
S.
Rota Nodari
, “
The double-power nonlinear Schrödinger equation and its generalizations: Uniqueness, non-degeneracy and applications
,”
Calculus Var. Partial Differ. Equations
59
,
197
(
2020
).
23.
T. D.
Lee
,
K.
Huang
, and
C. N.
Yang
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
,
1135
1145
(
1957
).
24.
T. T.
Wu
, “
Ground state of a Bose system of hard spheres
,”
Phys. Rev.
115
,
1390
1404
(
1959
).
25.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases
,”
Ann. Math.
192
,
893
976
(
2020
).
26.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.
27.
H.-T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground energy of a Bose gas
,”
J. Stat. Phys.
136
,
453
503
(
2009
).
28.
G.
Basti
,
S.
Cenatiempo
, and
B.
Schlein
, “
A new second-order upper bound for the ground state energy of dilute Bose gases
,”
Forum Math., Sigma
9
,
E74
(
2021
).
You do not currently have access to this content.