We review our recent study on the ground state energy of dilute Bose gases with three-body interactions. The main feature of our results is the emergence of the 3D energy-critical Schrödinger equation to describe the ground state energy of a Bose–Einstein condensate, where the nonlinearity strength is determined by a zero-scattering problem. Several open questions are also discussed.
REFERENCES
1.
M. H.
Anderson
, J. R.
Ensher
, M. R.
Matthews
, C. E.
Wieman
, and E. A.
Cornell
, “Observation of Bose–Einstein condensation in a dilute atomic vapor
,” Science
269
(5221
), 198
–201
(1995
).2.
K. B.
Davis
, M.-O.
Mewes
, M. R.
Andrews
, N. J.
van Druten
, D. S.
Durfee
, D. M.
Kurn
, and W.
Ketterle
, “Bose–Einstein condensation in a gas of sodium atoms
,” Phys. Rev. Lett.
75
, 3969
–3973
(1995
).3.
E. H.
Lieb
and J.
Yngvason
, “Ground state energy of the low density Bose gas
,” Phys. Rev. Lett.
80
, 2504
–2507
(1998
).4.
F. J.
Dyson
, “Ground-state energy of a hard-sphere gas
,” Phys. Rev.
106
, 20
–26
(1957
).5.
E. H.
Lieb
, R.
Seiringer
, and J.
Yngvason
, “Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional
,” Phys. Rev. A
61
, 043602
(2000
).6.
E. H.
Lieb
and R.
Seiringer
, “Proof of Bose–Einstein condensation for dilute trapped gases
,” Phys. Rev. Lett.
88
, 170409
(2002
).7.
D. S.
Petrov
, “Three-body interacting bosons in free space
,” Phys. Rev. Lett.
112
, 103201
(2014
).8.
A.
Hammond
, L.
Lavoine
, and T.
Bourdel
, “Tunable three-body interactions in driven two-component Bose–Einstein condensates
,” Phys. Rev. Lett.
128
(8
), 083401
(2022
).9.
P. T.
Nam
, J.
Ricaud
, and A.
Triay
, “The condensation of a trapped dilute Bose gas with three-body interactions
,” arXiv:2110.08195.10.
P. T.
Nam
, J.
Ricaud
, and A.
Triay
, “Ground state energy of the low density Bose gas with three-body interactions
,” arXiv:2201.13440.11.
D.
Ruelle
, Statistical Mechanics: Rigorous Results
(World Scientific; Imperial College Press
, Singapore; London
, 1999
).12.
E. H.
Lieb
, R.
Seiringer
, J. P.
Solovej
, and J.
Yngvason
, The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (Birkhäuser
, 2005
).13.
E. H.
Lieb
and R.
Seiringer
, “Derivation of the Gross–Pitaevskii equation for rotating Bose gases
,” Commun. Math. Phys.
264
, 505
–537
(2006
).14.
P. T.
Nam
, N.
Rougerie
, and R.
Seiringer
, “Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,” Anal. PDE
9
, 459
–485
(2016
).15.
M.
Lewin
, P. T.
Nam
, and N.
Rougerie
, “The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases
,” Trans. Am. Math. Soc.
369
, 6131
–6157
(2016
).16.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Bogoliubov theory in the Gross–Pitaevskii limit
,” Acta Math.
222
, 219
–335
(2019
).17.
C.
Brennecke
, B.
Schlein
, and S.
Schraven
, “Bogoliubov theory for trapped bosons in the Gross–Pitaevskii regime
,” Ann. Henri Poincaré
23
, 1583
–1658
(2022
).18.
P. T.
Nam
and A.
Triay
, “Bogoliubov excitation spectrum of trapped Bose gases in the Gross–Pitaevskii regime
,” arXiv:2106.11949.19.
M.
Lewin
, P. T.
Nam
, S.
Serfaty
, and J. P.
Solovej
, “Bogoliubov spectrum of interacting Bose gases
,” Commun. Pure Appl. Math.
68
, 413
–471
(2015
).20.
R. N.
Bisset
and P. B.
Blakie
, “Crystallization of a dilute atomic dipolar condensate
,” Phys. Rev. A
92
, 061603
(2015
).21.
P. B.
Blakie
, “Properties of a dipolar condensate with three-body interactions
,” Phys. Rev. A
93
, 033644
(2016
).22.
M.
Lewin
and S.
Rota Nodari
, “The double-power nonlinear Schrödinger equation and its generalizations: Uniqueness, non-degeneracy and applications
,” Calculus Var. Partial Differ. Equations
59
, 197
(2020
).23.
T. D.
Lee
, K.
Huang
, and C. N.
Yang
, “Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,” Phys. Rev.
106
, 1135
–1145
(1957
).24.
T. T.
Wu
, “Ground state of a Bose system of hard spheres
,” Phys. Rev.
115
, 1390
–1404
(1959
).25.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases
,” Ann. Math.
192
, 893
–976
(2020
).26.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.27.
H.-T.
Yau
and J.
Yin
, “The second order upper bound for the ground energy of a Bose gas
,” J. Stat. Phys.
136
, 453
–503
(2009
).28.
G.
Basti
, S.
Cenatiempo
, and B.
Schlein
, “A new second-order upper bound for the ground state energy of dilute Bose gases
,” Forum Math., Sigma
9
, E74
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.