We review what is known, unknown, and expected about the mathematical properties of Coulomb and Riesz gases. Those describe infinite configurations of points in Rd interacting with the Riesz potential ±|x|s (respectively, −log |x| for s = 0). Our presentation follows the standard point of view of statistical mechanics, but we also mention how these systems arise in other important situations (e.g., in random matrix theory). The main question addressed in this Review is how to properly define the associated infinite point process and characterize it using some (renormalized) equilibrium equation. This is largely open in the long range case s < d. For the convenience of the reader, we give the detail of what is known in the short range case s > d. Finally, we discuss phase transitions and mention what is expected on physical grounds.

1.
Abo-Shaeer
,
J. R.
,
Raman
,
C.
,
Vogels
,
J. M.
, and
Ketterle
,
W.
, “
Observation of vortex lattices in Bose-Einstein condensates
,”
Science
292
,
476
479
(
2001
).
2.
Abrikosov
,
A. A.
, “
The magnetic properties of superconducting alloys
,”
J. Phys. Chem. Solids
2
,
199
208
(
1957
).
3.
Abul-Magd
,
A. Y.
, “
Modelling gap-size distribution of parked cars using random-matrix theory
,”
Physica A
368
,
536
540
(
2006
).
4.
Adhikari
,
K.
,
Ghosh
,
S.
, and
Lebowitz
,
J. L.
, “
Fluctuation and entropy in spectrally constrained random fields
,”
Commun. Math. Phys.
386
,
749
780
(
2021
).
5.
Aftalion
,
A.
, “
Vortex patterns in Bose Einstein condensates
,” in
Perspectives in Nonlinear Partial Differential Equations
, Contemporary Mathematics Vol. 446 (
American Mathematical Society
,
Providence, RI
,
2007
), pp.
1
18
.
6.
Aftalion
,
A.
and
Blanc
,
X.
, “
Vortex lattices in rotating Bose–Einstein condensates
,”
SIAM J. Math. Anal.
38
,
874
893
(
2006
).
7.
Agarwal
,
S.
,
Dhar
,
A.
,
Kulkarni
,
M.
,
Kundu
,
A.
,
Majumdar
,
S. N.
,
Mukamel
,
D.
, and
Schehr
,
G.
, “
Harmonically confined particles with long-range repulsive interactions
,”
Phys. Rev. Lett.
123
,
100603
(
2019
).
8.
Agarwal
,
S.
,
Kulkarni
,
M.
, and
Dhar
,
A.
, “
Some connections between the classical Calogero–Moser model and the log-gas
,”
J. Stat. Phys.
176
,
1463
1479
(
2019
).
9.
Agboola
,
D.
,
Knol
,
A. L.
,
Gill
,
P. M. W.
, and
Loos
,
P.-F.
, “
Uniform electron gases. III. Low-density gases on three-dimensional spheres
,”
J. Chem. Phys.
143
,
084114
(
2015
).
10.
Agrawal
,
R.
and
Kofke
,
D. A.
, “
Solid-fluid coexistence for inverse-power potentials
,”
Phys. Rev. Lett.
74
,
122
125
(
1995
).
11.
Agrawal
,
R.
and
Kofke
,
D. A.
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence
,”
Mol. Phys.
85
,
23
42
(
1995
).
12.
Aizenman
,
M.
,
Goldstein
,
S.
, and
Lebowitz
,
J. L.
, “
Bounded fluctuations and translation symmetry breaking in one-dimensional particle systems
,”
J. Stat. Phys.
103
,
601
618
(
2001
).
13.
Aizenman
,
M.
,
Jansen
,
S.
, and
Jung
,
P.
, “
Symmetry breaking in quasi-1D Coulomb systems
,”
Ann. Henri Poincare
11
,
1453
1485
(
2010
).
14.
Aizenman
,
M.
and
Martin
,
P. A.
, “
Structure of Gibbs states of one dimensional Coulomb systems
,”
Commun. Math. Phys.
78
,
99
116
(
1980
).
15.
Aizenman
,
M.
and
Warzel
,
S.
,
Random Operators
, Graduate Studies in Mathematics Vol. 168 (
American Mathematical Society
,
Providence, RI
,
2015
), pp.
xiv+326
.
16.
Alastuey
,
A.
, “
Propriétés d’équilibre du plasma classique à une composante en trois et deux dimensions
,”
Ann. Phys.
11
,
653
738
(
1986
).
17.
Alastuey
,
A.
and
Jancovici
,
B.
, “
Absence of strict crystalline order in a two-dimensional electron system
,”
J. Stat. Phys.
24
,
443
449
(
1981
).
18.
Alastuey
,
A.
and
Jancovici
,
B.
, “
On the classical two-dimensional one-component Coulomb plasma
,”
J. Phys.
42
,
1
12
(
1981
).
19.
Alastuey
,
A.
and
Jancovici
,
B.
, “
On potential and field fluctuations in two-dimensional classical charged systems
,”
J. Stat. Phys.
34
,
557
569
(
1984
).
20.
Alastuey
,
A.
and
Martin
,
P. A.
, “
Decay of correlations in classical fluids with long-range forces
,”
J. Stat. Phys.
39
,
405
426
(
1985
).
21.
Albeverio
,
S.
and
Høegh-Krohn
,
R.
, “
Homogeneous random fields and statistical mechanics
,”
J. Funct. Anal.
19
,
242
272
(
1975
).
22.
Albeverio
,
S.
,
Pastur
,
L.
, and
Shcherbina
,
M.
, “
On the 1/n expansion for some unitary invariant ensembles of random matrices
,”
Commun. Math. Phys.
224
,
271
305
(
2001
).
23.
Ameur
,
Y.
, “
Repulsion in low temperature β-ensembles
,”
Commun. Math. Phys.
359
,
1079
1089
(
2018
).
24.
Ameur
,
Y.
, “
A localization theorem for the planar Coulomb gas in an external field
,”
Electron. J. Probab.
26
,
1
21
(
2021
).
25.
Ameur
,
Y.
and
Ortega-Cerdà
,
J.
, “
Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates
,”
J. Funct. Anal.
263
,
1825
1861
(
2012
).
26.
Ameur
,
Y.
and
Romero
,
J. L.
, “
The planar low temperature Coulomb gas: Separation and equidistribution
,” arXiv:2010.10179 [math.PR] (
2022
).
27.
Anderson
,
G. W.
,
Guionnet
,
A.
, and
Zeitouni
,
O.
,
An Introduction to Random Matrices
, Cambridge Studies in Advanced Mathematics Vol. 118 (
Cambridge University Press
,
Cambridge
,
2010
), pp.
xiv+492
.
28.
Angelescu
,
N.
and
Nenciu
,
G.
, “
On the independence of the thermodynamic limit on the boundary conditions in quantum statistical mechanics
,”
Commun. Math. Phys.
29
,
15
30
(
1973
).
29.
Armstrong
,
S.
and
Serfaty
,
S.
, “
Local laws and rigidity for Coulomb gases at any temperature
,”
Ann. Probab.
49
,
46
121
(
2021
).
30.
Arovas
,
D.
,
Schrieffer
,
J. R.
, and
Wilczek
,
F.
, “
Fractional statistics and the quantum Hall effect
,”
Phys. Rev. Lett.
53
,
722
723
(
1984
).
31.
Astrakharchik
,
G. E.
,
Gangardt
,
D. M.
,
Lozovik
,
Y. E.
, and
Sorokin
,
I. A.
, “
Off-diagonal correlations of the Calogero-Sutherland model
,”
Phys. Rev. E
74
,
021105
(
2006
).
32.
Azadi
,
S.
and
Drummond
,
N. D.
, “
Low-density phase diagram of the three-dimensional electron gas
,” arXiv:2201.08743 [cond-mat.str-el] (
2022
).
33.
Bach
,
V.
,
Lieb
,
E. H.
, and
Solovej
,
J. P.
, “
Generalized Hartree-Fock theory and the Hubbard model
,”
J. Stat. Phys.
76
,
3
89
(
1994
).
34.
Bagchi
,
K.
,
Andersen
,
H. C.
, and
Swope
,
W.
, “
Computer simulation study of the melting transition in two dimensions
,”
Phys. Rev. Lett.
76
,
255
258
(
1996
).
35.
Baik
,
J.
,
Borodin
,
A.
,
Deift
,
P.
, and
Suidan
,
T.
, “
A model for the bus system in Cuernavaca (Mexico)
,”
J. Phys. A: Math. Gen.
39
,
8965
8975
(
2006
).
36.
Barnes
,
E. S.
and
Sloane
,
N. J. A.
, “
The optimal lattice quantizer in three dimensions
,”
SIAM J. Algebraic Discrete Methods
4
,
30
41
(
1983
).
37.
Bauerschmidt
,
R.
,
Bourgade
,
P.
,
Nikula
,
M.
, and
Yau
,
H.-T.
, “
Local density for two-dimensional one-component plasma
,”
Commun. Math. Phys.
356
,
189
230
(
2017
).
38.
Bauerschmidt
,
R.
,
Bourgade
,
P.
,
Nikula
,
M.
, and
Yau
,
H.-T.
, “
The two-dimensional Coulomb plasma: Quasi-free approximation and central limit theorem
,”
Adv. Theor. Math. Phys.
23
,
841
1002
(
2019
).
39.
Baus
,
M.
, “
Absence of long-range order with long-range potentials
,”
J. Stat. Phys.
22
,
111
119
(
1980
).
40.
Baus
,
M.
and
Hansen
,
J.-P.
, “
Statistical mechanics of simple Coulomb systems
,”
Phys. Rep.
59
,
1
94
(
1980
).
41.
Baxter
,
R. J.
, “
Statistical mechanics of a one-dimensional Coulomb system with a uniform charge background
,”
Math. Proc. Cambridge Philos. Soc.
59
,
779
787
(
1963
).
42.
Becke
,
A. D.
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
43.
Beltrán
,
C.
, “
The state of the art in Smale’s 7th problem
,” in
Foundations of Computational Mathematics, Budapest 2011
, London Mathematical Society Lecture Note Series Vol. 403 (
Cambridge University Press
,
Cambridge
,
2013
), pp.
1
15
.
44.
Benfatto
,
G.
,
Gruber
,
C.
, and
Martin
,
P. A.
, “
Exact decay of correlations for infinite range continuous systems
,”
Helv. Phys. Acta
57
,
63
85
(
1984
).
45.
Bergersen
,
B.
,
Boal
,
D.
, and
Palffy-Muhoray
,
P.
, “
Equilibrium configurations of particles on a sphere: The case of logarithmic interactions
,”
J. Phys. A: Math. Gen.
27
,
2579
2586
(
1994
).
46.
Berman
,
R.
,
Boucksom
,
S.
, and
Nyström
,
D. W.
, “
Fekete points and convergence towards equilibrium measures on complex manifolds
,”
Acta Math.
207
,
1
27
(
2011
).
47.
Berman
,
R. J.
, “
Large deviations for Gibbs measures with singular Hamiltonians and emergence of Kähler–Einstein metrics
,”
Commun. Math. Phys.
354
,
1133
1172
(
2017
).
48.
Berman
,
R. J.
, “
Statistical mechanics of interpolation nodes, pluripotential theory and complex geometry
,”
Ann. Polonici Math.
123
,
71
153
(
2019
).
49.
Berman
,
R. J.
, “
An invitation to Kähler-Einstein metrics and random point processes
,” in
Differential Geometry, Calabi-Yau Theory, and General Relativity. Lectures Given at Conferences Celebrating the 70th Birthday of Shing-Tung Yau at Harvard University, Cambridge, MA, USA, May 2019
(
International Press
,
Somerville, MA
,
2020
), pp.
35
87
.
50.
Bernard
,
D.
and
Wu
,
Y.-S.
, “
A note on statistical interactions and the thermodynamic Bethe ansatz
,” in
New Developments in Integrable Systems and Long-Range Interaction Models
, Nankai Lecture Notes on Mathematical Physics (
World Scientific
,
1994
).
51.
Berry
,
M. V.
, “
Semiclassical theory of spectral rigidity
,”
Proc. R. Soc. London, Ser. A
400
,
229
251
(
1985
).
52.
Bétermin
,
L.
, “
Local optimality of cubic lattices for interaction energies
,”
Anal. Math. Phys.
9
,
403
426
(
2019
).
53.
Bétermin
,
L.
and
Sandier
,
E.
, “
Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere
,”
Constr. Approximation
47
,
39
74
(
2018
).
54.
Bétermin
,
L.
,
Šamaj
,
L.
, and
Travěnec
,
I.
, “
Three-dimensional lattice ground states for Riesz and Lennard-Jones type energies
,” arXiv:2107.14020 (
2021
).
55.
Bethuel
,
F.
,
Brezis
,
H.
, and
Hélein
,
F.
,
Ginzburg-Landau Vortices
, Progress in Nonlinear Differential Equations and Their Applications Vol. 13 (
Birkhäuser Boston, Inc.
,
Boston, MA
,
1994
), p.
xxviii+159
.
56.
Bhaduri
,
R. K.
,
Murthy
,
M. V. N.
, and
Sen
,
D.
, “
The virial expansion of a classical interacting system
,”
J. Phys. A: Math. Theor.
43
,
045002
(
2010
).
57.
Blanc
,
X.
,
Le Bris
,
C.
, and
Lions
,
P.-L.
, “
Caractérisation des fonctions de R3 à potentiel Newtonien borné
,”
C. R. Math.
334
,
15
21
(
2002
).
58.
Blanc
,
X.
and
Lewin
,
M.
, “
The crystallization conjecture: A review
,”
EMS Surv. Math. Sci.
2
,
255
306
(
2015
).
59.
Blum
,
L.
,
Gruber
,
C.
,
Lebowitz
,
J. L.
, and
Martin
,
P.
, “
Perfect screening for charged systems
,”
Phys. Rev. Lett.
48
,
1769
1772
(
1982
).
60.
Bogomolny
,
E.
,
Giraud
,
O.
, and
Schmit
,
C.
, “
Random matrix ensembles associated with lax matrices
,”
Phys. Rev. Lett.
103
,
054103
(
2009
).
61.
Bohigas
,
O.
,
Giannoni
,
M. J.
, and
Schmit
,
C.
, “
Characterization of chaotic quantum spectra and universality of level fluctuation laws
,”
Phys. Rev. Lett.
52
,
1
4
(
1984
).
62.
Bonsall
,
L.
and
Maradudin
,
A. A.
, “
Some static and dynamical properties of a two-dimensional Wigner crystal
,”
Phys. Rev. B
15
,
1959
1973
(
1977
).
63.
Borodachov
,
S. V.
,
Hardin
,
D. P.
, and
Saff
,
E. B.
, “
Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets
,”
Trans. Am. Math. Soc.
360
,
1559
1580
(
2008
).
64.
Borodachov
,
S. V.
,
Hardin
,
D. P.
, and
Saff
,
E. B.
,
Discrete Energy on Rectifiable Sets
, Springer Monographs in Mathematics (
Springer
,
New York
,
2019
), pp.
xviii+666
.
65.
Borodin
,
A.
and
Serfaty
,
S.
, “
Renormalized energy concentration in random matrices
,”
Commun. Math. Phys.
320
,
199
244
(
2013
).
66.
Borot
,
G.
and
Guionnet
,
A.
, “
Asymptotic expansion of β matrix models in the one-cut regime
,”
Commun. Math. Phys.
317
,
447
483
(
2013
).
67.
Borot
,
G.
,
Guionnet
,
A.
, and
Kozlowski
,
K. K.
, “
Large-N asymptotic expansion for mean field models with Coulomb gas interaction
,”
Int. Math. Res. Not.
2015
,
10451
10524
.
68.
Borwein
,
D.
,
Borwein
,
J. M.
, and
Shail
,
R.
, “
Analysis of certain lattice sums
,”
J. Math. Anal. Appl.
143
,
126
137
(
1989
).
69.
Borwein
,
D.
,
Borwein
,
J. M.
,
Shail
,
R.
, and
Zucker
,
I. J.
, “
Energy of static electron lattices
,”
J. Phys. A: Math. Gen.
21
,
1519
1531
(
1988
).
70.
Borwein
,
D.
,
Borwein
,
J. M.
, and
Straub
,
A.
, “
On lattice sums and Wigner limits
,”
J. Math. Anal. Appl.
414
,
489
513
(
2014
).
71.
Borwein
,
D.
,
Borwein
,
J. M.
, and
Taylor
,
K. F.
, “
Convergence of lattice sums and Madelung’s constant
,”
J. Math. Phys.
26
,
2999
3009
(
1985
).
72.
Borwein
,
J. M.
,
Glasser
,
M. L.
,
McPhedran
,
R. C.
,
Wan
,
J. G.
, and
Zucker
,
I. J.
,
Lattice Sums Then and Now
, Encyclopedia of Mathematics and its Applications Vol. 150 (
Cambridge University Press
,
Cambridge
,
2013
), pp.
xx+368
.
73.
Bourgade
,
P.
,
Erdős
,
L.
, and
Yau
,
H.-T.
, “
Bulk universality of general β-ensembles with non-convex potential
,”
J. Math. Phys.
53
,
095221
(
2012
).
74.
Bourgade
,
P.
,
Erdős
,
L.
, and
Yau
,
H.-T.
, “
Universality of general β-ensembles
,”
Duke Math. J.
163
,
1127
1190
(
2014
).
75.
Bourgade
,
P.
and
Keating
,
J. P.
, “
Quantum chaos, random matrix theory, and the Riemann ζ-function
,” in
Chaos
, Progress in Mathematical Physics Vol. 66 (
Birkhäuser/Springer
,
Basel
,
2013
), pp.
125
168
, Proceedings of the 14th Poincaré Seminar held in Paris, June 5, 2010.
76.
Boursier
,
J.
, “
Optimal local laws and CLT for 1D long-range Riesz gases
,” arXiv:2112.05881 [math.PR] (
2021
).
77.
Brascamp
,
H. J.
and
Lieb
,
E. H.
, “
Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma
,” in
Functional Integration and its Applications
, edited by
Arthurs
,
A.
(
Clarendon Press
,
Oxford
,
1975
).
78.
Brauchart
,
J. S.
,
Dragnev
,
P. D.
, and
Saff
,
E. B.
, “
Riesz external field problems on the hypersphere and optimal point separation
,”
Potential Anal.
41
,
647
678
(
2014
).
79.
Brauchart
,
J. S.
,
Hardin
,
D. P.
, and
Saff
,
E. B.
, “
The Riesz energy of the Nth roots of unity: An asymptotic expansion for large N
,”
Bull. London Math. Soc.
41
,
621
633
(
2009
).
80.
Brauchart
,
J. S.
,
Hardin
,
D. P.
, and
Saff
,
E. B.
, “
The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere
,” in
Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications
, Contemporary Mathematics Vol. 578 (
American Mathematical Society
,
Providence, RI
,
2012
), pp.
31
61
.
81.
Brody
,
T. A.
,
Flores
,
J.
,
French
,
J. B.
,
Mello
,
P. A.
,
Pandey
,
A.
, and
Wong
,
S. S. M.
, “
Random-matrix physics: Spectrum and strength fluctuations
,”
Rev. Mod. Phys.
53
,
385
479
(
1981
).
82.
Brush
,
S. G.
,
Sahlin
,
H. L.
, and
Teller
,
E.
, “
Monte Carlo study of a one-component plasma. I
,”
J. Chem. Phys.
45
,
2102
2118
(
1966
).
83.
Brydges
,
D. C.
, “
A rigorous approach to Debye screening in dilute classical Coulomb systems
,”
Commun. Math. Phys.
58
,
313
350
(
1978
).
84.
Brydges
,
D. C.
and
Federbush
,
P.
, “
Debye screening
,”
Commun. Math. Phys.
73
,
197
246
(
1980
).
85.
Brydges
,
D. C.
and
Martin
,
P. A.
, “
Coulomb systems at low density: A review
,”
J. Stat. Phys.
96
,
1163
1330
(
1999
).
86.
Caffarelli
,
L.
and
Silvestre
,
L.
, “
An extension problem related to the fractional Laplacian
,”
Commun. Partial Differ. Equations
32
,
1245
1260
(
2007
).
87.
Caglioti
,
E.
,
Lions
,
P. L.
,
Marchioro
,
C.
, and
Pulvirenti
,
M.
, “
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description
,”
Commun. Math. Phys.
143
,
501
525
(
1992
);
Caglioti
,
E.
,
Lions
,
P. L.
,
Marchioro
,
C.
, and
Pulvirenti
,
M.
,
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. II
,”
Commun. Math. Phys.
174
,
229
260
(
1995
).
88.
Caillol
,
J. M.
and
Levesque
,
D.
, “
Low-density phase diagram of the two-dimensional Coulomb gas
,”
Phys. Rev. B
33
,
499
509
(
1986
).
89.
Caillol
,
J. M.
,
Levesque
,
D.
,
Weis
,
J. J.
, and
Hansen
,
J. P.
, “
A Monte Carlo study of the classical two-dimensional one-component plasma
,”
J. Stat. Phys.
28
,
325
349
(
1982
).
90.
Callaway
,
D. J. E.
, “
Random matrices, fractional statistics, and the quantum Hall effect
,”
Phys. Rev. B
43
,
8641
8643
(
1991
).
91.
Calogero
,
F.
, “
Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials
,”
J. Math. Phys.
12
,
419
436
(
1971
).
92.
Campa
,
A.
,
Dauxois
,
T.
,
Fanelli
,
D.
, and
Ruffo
,
S.
,
Physics of Long-Range Interacting Systems
(
Oxford University Press
,
2014
).
93.
Campa
,
A.
,
Dauxois
,
T.
, and
Ruffo
,
S.
, “
Statistical mechanics and dynamics of solvable models with long-range interactions
,”
Phys. Rep.
480
,
57
159
(
2009
).
94.
Campanino
,
M.
,
Capocaccia
,
D.
, and
Olivieri
,
E.
, “
Analyticity for one-dimensional systems with long-range superstable interactions
,”
J. Stat. Phys.
33
,
437
476
(
1983
).
95.
Cancès
,
É.
,
Lahbabi
,
S.
, and
Lewin
,
M.
, “
Mean-field models for disordered crystals
,”
J. Math. Pures Appl.
100
,
241
274
(
2013
).
96.
Cândido
,
L.
,
Bernu
,
B.
, and
Ceperley
,
D. M.
, “
Magnetic ordering of the three-dimensional Wigner crystal
,”
Phys. Rev. B
70
,
094413
(
2004
).
97.
Cassels
,
J. W. S.
, “
On a problem of Rankin about the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
4
,
73
80
(
1959
).
98.
Catto
,
I.
,
Le Bris
,
C.
, and
Lions
,
P.-L.
,
The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models
, Oxford Mathematical Monographs (
The Clarendon Press; Oxford University Press
,
New York
,
1998
), pp.
xiv+277
.
99.
Catto
,
I.
,
Le Bris
,
C.
, and
Lions
,
P.-L.
, “
On the thermodynamic limit for Hartree-Fock type models
,”
Ann. Inst. Henri Poincare
18
,
687
760
(
2001
).
100.
Ceperley
,
D. M.
and
Alder
,
B. J.
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
101.
Chafaï
,
D.
, “
Aspects of Coulomb gases
,” arXiv:2108.10653 [math.PR] (
2021
).
102.
Chakravarty
,
S.
and
Dasgupta
,
C.
, “
Absence of crystalline order in two dimensions
,”
Phys. Rev. B
22
,
369
372
(
1980
).
103.
Chen
,
X.
and
Oshita
,
Y.
, “
An application of the modular function in nonlocal variational problems
,”
Arch. Ration. Mech. Anal.
186
,
109
132
(
2007
).
104.
Choquard
,
P.
, “
On the statistical mechanics of one-dimensional Coulomb systems
,”
Helv. Phys. Acta
48
,
585
598
(
1975
).
105.
Choquard
,
P.
, “
Selected topics on the equilibrium statistical mechanics of Coulomb systems
,” in
Strongly Coupled Plasmas
, edited by
Kalman
,
G.
and
Carini
,
P.
(
Springer
,
Boston, MA
,
1978
), pp.
347
406
.
106.
Choquard
,
P.
, “
Classical and quantum partition functions of the Calogero-Moser-Sutherland model
,” in
Calogero–Moser–Sutherland models (Montréal, QC, 1997)
, CRM Series in Mathematical Physics (
Springer
,
New York
,
2000
), pp.
117
125
.
107.
Choquard
,
P.
,
Favre
,
P.
, and
Gruber
,
C.
, “
On the equation of state of classical one-component systems with long-range forces
,”
J. Stat. Phys.
23
,
405
442
(
1980
).
108.
Choquard
,
P.
,
Kunz
,
H.
,
Martin
,
P. A.
, and
Navet
,
M.
, “
One-dimensional Coulomb systems
,” in
Physics in One Dimension
, edited by
Bernasconi
,
J.
and
Schneider
,
T.
(
Springer
,
Berlin, Heidelberg
,
1981
), pp.
335
350
.
109.
Choquet
,
G.
, “
Diamètre transfini et comparaison de diverses capacités
,” in
Séminaire Brelot-Choquet-Deny
, Théorie du Potentiel (
Faculté des Sciences de Paris
,
1958; 1959
), exp. 4.
110.
Chu
,
J. H.
and
Lin
,
I.
, “
Coulomb lattice in a weakly ionized colloidal plasma
,”
Physica A
205
,
183
190
(
1994
).
111.
Clark
,
B. K.
,
Casula
,
M.
, and
Ceperley
,
D. M.
, “
Hexatic and mesoscopic phases in a 2D quantum coulomb system
,”
Phys. Rev. Lett.
103
,
055701
(
2009
).
112.
Cohn
,
H.
and
Kumar
,
A.
, “
Universally optimal distribution of points on spheres
,”
J. Am. Math. Soc.
20
,
99
148
(
2007
).
113.
Cohn
,
H.
,
Kumar
,
A.
,
Miller
,
S. D.
,
Radchenko
,
D.
, and
Viazovska
,
M.
, “
Universal optimality of the E8 and Leech lattices and interpolation formulas
,”
Ann. Math.
arXiv:1902.05438 [math.MG] (
2019
) (in press).
114.
Coldwell-Horsfall
,
R. A.
and
Maradudin
,
A. A.
, “
Zero-point energy of an electron lattice
,”
J. Math. Phys.
1
,
395
404
(
1960
).
115.
Colombo
,
M.
,
De Pascale
,
L.
, and
Di Marino
,
S.
, “
Multimarginal optimal transport maps for one-dimensional repulsive costs
,”
Can. J. Math.
67
,
350
368
(
2015
).
116.
Conlon
,
J. G.
,
Lieb
,
E. H.
, and
Yau
,
H.-T.
, “
The Coulomb gas at low temperature and low density
,”
Commun. Math. Phys.
125
,
153
180
(
1989
).
117.
Conway
,
J. H.
and
Sloane
,
N. J. A.
,
Sphere Packings, Lattices and Groups
, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Vol. 290 (
Springer-Verlag
,
New York
,
1999
), pp.
lxxiv+703
.
118.
Cooper
,
N. R.
, “
Rapidly rotating atomic gases
,”
Adv. Phys.
57
,
539
616
(
2008
).
119.
Cotar
,
C.
,
Friesecke
,
G.
, and
Klüppelberg
,
C.
, “
Density functional theory and optimal transportation with Coulomb cost
,”
Commun. Pure Appl. Math.
66
,
548
599
(
2013
).
120.
Cotar
,
C.
,
Friesecke
,
G.
, and
Pass
,
B.
, “
Infinite-body optimal transport with Coulomb cost
,”
Calculus Var. Partial Differ. Equations
54
,
717
742
(
2015
).
121.
Cotar
,
C.
and
Petrache
,
M.
, “
Equality of the Jellium and uniform electron gas next-order asymptotic terms for Coulomb and Riesz potentials
,” (version 5), arXiv:1707.07664v5 [math-ph] (
2019
).
122.
Cotar
,
C.
and
Petrache
,
M.
, “
Next-order asymptotic expansion for N-marginal optimal transport with Coulomb and Riesz costs
,”
Adv. Math.
344
,
137
233
(
2019
).
123.
Cribier
,
D.
,
Jacrot
,
B.
,
Madhav Rao
,
L.
, and
Farnoux
,
B.
, “
Mise en évidence par diffraction de neutrons d’une structure périodique du champ magnétique dans le niobium supraconducteur
,”
Phys. Lett.
9
,
106
107
(
1964
).
124.
Dahlberg
,
B. E. J.
, “
On the distribution of Fekete points
,”
Duke Math. J.
45
,
537
542
(
1978
).
125.
Dynamics and Thermodynamics of Systems with Long-Range Interactions
, Lecture Notes in Physics Vol. 602, edited by
Dauxois
,
T.
,
Ruffo
,
S.
,
Arimondo
,
E.
, and
Wilkens
,
M.
(
Springer
,
Berlin, Heidelberg
,
2002
).
126.
de-Picciotto
,
R.
,
Reznikov
,
M.
,
Heiblum
,
M.
,
Umansky
,
V.
,
Bunin
,
G.
, and
Mahalu
,
D.
, “
Direct observation of a fractional charge
,”
Nature
389
,
162
164
(
1997
).
127.
Deift
,
P.
, “
Some open problems in random matrix theory and the theory of integrable systems. II
,”
SIGMA
13
,
23
(
2017
).
128.
Deike
,
I.
,
Ballauff
,
M.
,
Willenbacher
,
N.
, and
Weiss
,
A.
, “
Rheology of thermosensitive latex particles including the high-frequency limit
,”
J. Rheol.
45
,
709
720
(
2001
).
129.
Dereudre
,
D.
,
Hardy
,
A.
,
Leblé
,
T.
, and
Maïda
,
M.
, “
DLR equations and rigidity for the sine-beta process
,”
Commun. Pure Appl. Math.
74
,
172
222
(
2021
).
130.
Dereudre
,
D.
and
Vasseur
,
T.
, “
Existence of Gibbs point processes with stable infinite range interaction
,”
J. Appl. Probab.
57
,
775
791
(
2020
).
131.
Dereudre
,
D.
and
Vasseur
,
T.
, “
Number-rigidity and β-circular Riesz gas
,” arXiv:2104.09408 [math.PR] (
2021
).
132.
Derrick
,
G. H.
, “
Statistical mechanics in external force fields
,”
Phys. Rev.
181
,
457
462
(
1969
).
133.
Deutsch
,
C.
,
Dewitt
,
H. E.
, and
Furutani
,
Y.
, “
Debye thermodynamics for the two-dimensional one-component plasma
,”
Phys. Rev. A
20
,
2631
2633
(
1979
).
134.
Di Marino
,
S.
,
Lewin
,
M.
, and
Nenna
,
L.
, “
Grand-canonical optimal transport
,” arXiv:2201.06859 [math.OC] (
2022
).
135.
Diananda
,
P. H.
, “
Notes on two lemmas concerning the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
6
,
202
204
(
1964
).
136.
Dinsmore
,
A. D.
,
Hsu
,
M. F.
,
Nikolaides
,
M. G.
,
Marquez
,
M.
,
Bausch
,
A. R.
, and
Weitz
,
D. A.
, “
Colloidosomes: Selectively permeable capsules composed of colloidal particles
,”
Science
298
,
1006
1009
(
2002
).
137.
Dobrušin
,
R. L.
, “
The problem of uniqueness of a gibbsian random field and the problem of phase transitions
,”
Funct. Anal. Appl.
2
,
302
312
(
1968
).
138.
Dobrušin
,
R. L.
, “
Description of a random field by means of conditional probabilities and conditions for its regularity
,”
Teor. Verojatnost. Primen.
13
,
201
229
(
1968
).
139.
Dobrušin
,
R. L.
, “
Gibbsian random fields for lattice systems with pairwise interactions
,”
Funkcional. Anal. Priložen.
2
,
31
43
(
1968
).
140.
Dobrušin
,
R. L.
, “
Gibbsian random fields. General case
,”
Funkcional. Anal. Priložen.
3
,
27
35
(
1969
).
141.
R. L.
Dobrušin
and
R. A.
Minlos
, “
Existence and continuity of pressure in classical statistical physics
,”
Teor. Verojatnost. Primenen.
12
,
595
618
(
1967
).
142.
Dragnev
,
P. D.
, “
On the separation of logarithmic points on the sphere
,” in
Approximation Theory. X (St. Louis, MO, 2001)
, Innovative Applied Mathematics (
Vanderbilt University Press
,
Nashville, TN
,
2002
), pp.
137
144
.
143.
Dragnev
,
P. D.
and
Saff
,
E. B.
, “
Riesz spherical potentials with external fields and minimal energy points separation
,”
Potential Anal.
26
,
139
162
(
2007
).
144.
Drummond
,
N. D.
,
Radnai
,
Z.
,
Trail
,
J. R.
,
Towler
,
M. D.
, and
Needs
,
R. J.
, “
Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
,”
Phys. Rev. B
69
,
085116
(
2004
).
145.
Ducatez
,
R.
, “
Analysis of the one dimensional inhomogeneous Jellium model with the Birkhoff-Hopf theorem
,” arXiv:1806.07681 [math.SP] (
2018
).
146.
Dumitriu
,
I.
and
Edelman
,
A.
, “
Matrix models for beta ensembles
,”
J. Math. Phys.
43
,
5830
5847
(
2002
).
147.
Duneau
,
M.
and
Souillard
,
B.
, “
Cluster properties of lattice and continuous systems
,”
Commun. Math. Phys.
47
,
155
166
(
1976
).
148.
Dyson
,
F. J.
, “
Statistical theory of the energy levels of complex systems. I
,”
3
,
140
156
(
1962
);
Dyson
,
F. J.
Statistical theory of the energy levels of complex systems. II
,”
J. Math. Phys.
3
, 157–165 (
1962
);
Dyson
,
F. J.
Statistical theory of the energy levels of complex systems. III
,”
J. Math. Phys.
3
, 166–175 (
1962
).
149.
Dyson
,
F. J.
, “
Ground-state energy of a finite system of charged particles
,”
J. Math. Phys.
8
,
1538
1545
(
1967
).
150.
Dyson
,
F. J.
, “
Existence of a phase-transition in a one-dimensional Ising ferromagnet
,”
Commun. Math. Phys.
12
,
91
107
(
1969
).
151.
Dyson
,
F. J.
, “
Chemical binding in classical Coulomb lattices
,”
Ann. Phys.
63
,
1
11
(
1971
).
152.
Dyson
,
F. J.
and
Lenard
,
A.
, “
Stability of matter. I
,”
J. Math. Phys.
8
,
423
434
(
1967
).
153.
Dyson
,
F. J.
and
Mehta
,
M. L.
, “
Statistical theory of the energy levels of complex systems. IV
,”
J. Math. Phys.
4
,
701
712
(
1963
).
154.
Edwards
,
S. F.
and
Lenard
,
A.
, “
Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration
,”
J. Math. Phys.
3
,
778
792
(
1962
).
155.
Ellis
,
R. S.
,
Entropy, Large Deviations, and Statistical Mechanics
, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Vol. 271 (
Springer-Verlag
,
New York
,
1985
), p.
xiv+364
.
156.
Emersleben
,
O.
, “
Zetafunktionen und elektrostatische gitterpotentiale
,”
Phys. Z.
24
,
73
97
(
1923
).
157.
Ennola
,
V.
, “
A lemma about the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
6
,
198
201
(
1964
).
158.
Ennola
,
V.
, “
On a problem about the Epstein zeta-function
,”
Math. Proc. Cambridge Philos. Soc.
60
,
855
875
(
1964
).
159.
Epstein
,
P.
, “
Zur theorie allgemeiner zetafunktionen. II
,”
Math. Ann.
63
,
205
216
(
1906
).
160.
Erbar
,
M.
,
Huesmann
,
M.
, and
Leblé
,
T.
, “
The one-dimensional log-gas free energy has a unique minimizer
,”
Commun. Pure Appl. Math.
74
,
615
675
(
2021
).
161.
Erdős
,
L.
, “
Universality for random matrices and log-gases
,” in
Current Developments in Mathematics 2012
(
International Press
,
Somerville, MA
,
2013
), pp.
59
132
.
162.
Erdős
,
L.
,
Ramírez
,
J.
,
Schlein
,
B.
,
Tao
,
T.
,
Vu
,
V.
, and
Yau
,
H.-T.
, “
Bulk universality for Wigner Hermitian matrices with subexponential decay
,”
Math. Res. Lett.
17
,
667
674
(
2010
).
163.
Erdős
,
L.
and
Yau
,
H.-T.
, “
Universality of local spectral statistics of random matrices
,”
Bull. Am. Math. Soc.
49
,
377
414
(
2012
).
164.
Erdős
,
L.
and
Yau
,
H.-T.
, “
Gap universality of generalized Wigner and β-ensembles
,”
J. Eur. Math. Soc.
17
,
1927
2036
(
2015
).
165.
Erdős
,
L.
and
Yau
,
H.-T.
,
A Dynamical Approach to Random Matrix Theory
, Courant Lecture Notes in Mathematics Vol. 28 (
Courant Institute of Mathematical Sciences; American Mathematical Society
,
New York; Providence, RI
,
2017
), p.
ix+226
.
166.
Erdös
,
L.
,
Schlein
,
B.
, and
Yau
,
H.-T.
, “
Universality of random matrices and local relaxation flow
,”
Invent. Math.
185
,
75
119
(
2011
).
167.
Ewald
,
P. P.
, “
Die berechnung optischer und elektrostatischer gitterpotentiale
,”
Ann. Phys.
369
,
253
287
(
1921
).
168.
Fabes
,
E. B.
,
Kenig
,
C. E.
, and
Serapioni
,
R. P.
, “
The local regularity of solutions of degenerate elliptic equations
,”
Commun. Partial Differ. Equations
7
,
77
116
(
1982
).
169.
Falco
,
P.
, “
Kosterlitz-Thouless transition line for the two dimensional Coulomb gas
,”
Commun. Math. Phys.
312
,
559
609
(
2012
).
170.
Fantoni
,
R.
,
Jancovici
,
B.
, and
Téllez
,
G.
, “
Pressures for a one-component plasma on a pseudosphere
,”
J. Stat. Phys.
112
,
27
57
(
2003
).
171.
Federbush
,
P.
and
Kennedy
,
T.
, “
Surface effects in Debye screening
,”
Commun. Math. Phys.
102
,
361
423
(
1985
).
172.
Fefferman
,
C.
, “
The thermodynamic limit for a crystal
,”
Commun. Math. Phys.
98
,
289
311
(
1985
).
173.
Fejes Tóth
,
L.
, “
Über eine punktverteilung auf der Kugel
,”
Acta Math. Acad. Sci. Hung.
10
,
13
19
(
1959
).
174.
Fekete
,
M.
, “
Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten
,”
Math. Z.
17
,
228
249
(
1923
).
175.
Fields
,
K. L.
, “
Locally minimal Epstein zeta functions
,”
Mathematika
27
,
17
24
(
1980
).
176.
Fisher
,
M. E.
, “
The free energy of a macroscopic system
,”
Arch. Ration. Mech. Anal.
17
,
377
410
(
1964
).
177.
Fisher
,
M. E.
and
Lebowitz
,
J. L.
, “
Asymptotic free energy of a system with periodic boundary conditions
,”
Commun. Math. Phys.
19
,
251
272
(
1970
).
178.
Fisher
,
M. E.
and
Ruelle
,
D.
, “
The stability of many-particle systems
,”
J. Math. Phys.
7
,
260
270
(
1966
).
179.
Flack
,
A.
,
Majumdar
,
S. N.
, and
Schehr
,
G.
, “
Gap probability and full counting statistics in the one dimensional one-component plasma
,” arXiv:2202.12118 (
2022
).
180.
Fontaine
,
J. R.
and
Martin
,
P. A.
, “
Equilibrium equations and symmetries of classical Coulomb systems
,”
J. Stat. Phys.
36
,
163
179
(
1984
).
181.
Föppl
,
L.
, “
Stabile anordnungen von elektronen im atom
,”
J. Reine Angew. Math.
1912
(
141
),
251
302
.
182.
Forrester
,
P. J.
, “
Exact integral formulas and asymptotics for the correlations in the 1/r2 quantum many body system
,”
Phys. Lett. A
179
,
127
130
(
1993
).
183.
Forrester
,
P. J.
, “
Analogues between a quantum many body problem and the log-gas
,”
J. Phys. A: Math. Gen.
17
,
2059
(
1984
).
184.
Forrester
,
P. J.
, “
Exact results for two-dimensional Coulomb systems
,” in
Fundamental Problems in Statistical Mechanics
(
Altenberg
,
1997
), pp.
235
270
.
185.
Forrester
,
P. J.
,
Log-Gases and Random Matrices
, London Mathematical Society Monographs Series Vol. 34 (
Princeton University Press
,
Princeton, NJ
,
2010
), p.
xiv+791
.
186.
Forrester
,
P. J.
, “
A review of exact results for fluctuation formulas in random matrix theory
,” arXiv:2204.03303 (
2022
).
187.
Fröhlich
,
J.
, “
Classical and quantum statistical mechanics in one and two dimensions: Two-component Yukawa- and Coulomb systems
,”
Commun. Math. Phys.
47
,
233
268
(
1976
).
188.
Fröhlich
,
J.
and
Park
,
Y. M.
, “
Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems
,”
Commun. Math. Phys.
59
,
235
266
(
1978
).
189.
Fröhlich
,
J.
and
Pfister
,
C.
, “
On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems
,”
Commun. Math. Phys.
81
,
277
298
(
1981
).
190.
Fröhlich
,
J.
and
Pfister
,
C.-E.
, “
Absence of crystalline ordering in two dimensions
,”
Commun. Math. Phys.
104
,
697
700
(
1986
).
191.
Fröhlich
,
J.
,
Simon
,
B.
, and
Spencer
,
T.
, “
Infrared bounds, phase transitions and continuous symmetry breaking
,”
Commun. Math. Phys.
50
,
79
95
(
1976
).
192.
Fröhlich
,
J.
and
Spencer
,
T.
, “
Kosterlitz-Thouless transition in the two-dimensional plane rotator and Coulomb gas
,”
Phys. Rev. Lett.
46
,
1006
1009
(
1981
).
193.
Fröhlich
,
J.
and
Spencer
,
T.
, “
The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas
,”
Commun. Math. Phys.
81
,
527
602
(
1981
).
194.
Fröhlich
,
J.
and
Spencer
,
T.
, “
On the statistical mechanics of classical Coulomb and dipole gases
,”
J. Stat. Phys.
24
,
617
701
(
1981
).
195.
Fröhlich
,
J.
and
Spencer
,
T.
, “
The phase transition in the one-dimensional Ising model with 1/r2 interaction energy
,”
Commun. Math. Phys.
84
,
87
101
(
1982
).
196.
Fuchs
,
K.
, “
A quantum mechanical investigation of the cohesive forces of metallic copper
,”
Proc. R. Soc. London, Ser. A
151
,
585
602
(
1935
).
197.
Gallavotti
,
G.
,
Statistical Mechanics, Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin
,
1999
), pp.
xiv+339
.
198.
Gallavotti
,
G.
and
Marchioro
,
C.
, “
On the calculation of an integral
,”
J. Math. Anal. Appl.
44
,
661
675
(
1973
).
199.
Gangardt
,
D. M.
and
Kamenev
,
A.
, “
Replica treatment of the Calogero–Sutherland model
,”
Nucl. Phys. B
610
,
578
594
(
2001
).
200.
Gann
,
R. C.
,
Chakravarty
,
S.
, and
Chester
,
G. V.
, “
Monte Carlo simulation of the classical two-dimensional one-component plasma
,”
Phys. Rev. B
20
,
326
344
(
1979
).
201.
Garrod
,
C.
and
Simmons
,
C.
, “
Rigorous statistical mechanics for nonuniform systems
,”
J. Math. Phys.
13
,
1168
1176
(
1972
).
202.
Gasser
,
U.
,
Eisenmann
,
C.
,
Maret
,
G.
, and
Keim
,
P.
, “
Melting of crystals in two dimensions
,”
ChemPhysChem
11
,
963
970
(
2010
).
203.
Ge
,
Y.
and
Sandier
,
E.
, “
Lattices with finite renormalized coulombian interaction energy in the plane
,”
Tunis. J. Math.
3
,
93
120
(
2021
).
204.
Genovese
,
G.
and
Simonella
,
S.
, “
On the stationary BBGKY hierarchy for equilibrium states
,”
J. Stat. Phys.
148
,
89
112
(
2012
).
205.
Georgii
,
H.-O.
, “
Canonical and grand canonical Gibbs states for continuum systems
,”
Commun. Math. Phys.
48
,
31
51
(
1976
).
206.
Georgii
,
H.-O.
, “
Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction
,”
Probab. Theory Relat. Fields
99
,
171
195
(
1994
).
207.
Georgii
,
H.-O.
, “
The equivalence of ensembles for classical systems of particles
,”
J. Stat. Phys.
80
,
1341
1378
(
1995
).
208.
Georgii
,
H.-O.
, “
Translation invariance and continuous symmetries in two-dimensional continuum systems
,” in
Mathematical Results in Statistical Mechanics (Marseilles, 1998)
(
World Scientific Publishing
,
River Edge, NJ
,
1999
), pp.
53
69
.
209.
Georgii
,
H.-O.
,
Gibbs Measures and Phase Transitions
, 2nd ed., De Gruyter Studies in Mathematics Vol. 9 (
Walter de Gruyter & Co.
,
Berlin
,
2011
), pp.
xiv+545
.
210.
Georgii
,
H.-O.
and
Zessin
,
H.
, “
Large deviations and the maximum entropy principle for marked point random fields
,”
Probab. Theory Relat. Fields
96
,
177
204
(
1993
).
211.
Ghosh
,
S.
, “
Determinantal processes and completeness of random exponentials: The critical case
,”
Probab. Theory Relat. Fields
163
,
643
665
(
2015
).
212.
Ghosh
,
S.
and
Lebowitz
,
J.
, “
Number rigidity in superhomogeneous random point fields
,”
J. Stat. Phys.
166
,
1016
1027
(
2017
).
213.
Ghosh
,
S.
and
Lebowitz
,
J. L.
, “
Fluctuations, large deviations and rigidity in hyperuniform systems: A brief survey
,”
Indian J. Pure Appl. Math.
48
,
609
631
(
2017
).
214.
Ghosh
,
S.
and
Peres
,
Y.
, “
Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues
,”
Duke Math. J.
166
,
1789
1858
(
2017
).
215.
Gigante
,
G.
and
Leopardi
,
P.
, “
Diameter bounded equal measure partitions of Ahlfors regular metric measure spaces
,”
Discrete Comput. Geom.
57
,
419
430
(
2017
).
216.
Ginibre
,
J.
, “
Statistical ensembles of complex, quaternion, and real matrices
,”
J. Math. Phys.
6
,
440
449
(
1965
).
217.
Ginibre
,
J.
, “
Rigorous lower bound on the compressibility of a classical system
,”
Phys. Lett. A
24
,
223
224
(
1967
).
218.
Giuliani
,
G.
and
Vignale
,
G.
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2005
).
219.
Goldman
,
M.
,
Novaga
,
M.
, and
Ruffini
,
B.
, “
Existence and stability for a non-local isoperimetric model of charged liquid drops
,”
Arch. Ration. Mech. Anal.
217
,
1
36
(
2015
).
220.
Goldman
,
M.
,
Novaga
,
M.
, and
Ruffini
,
B.
, “
Rigidity of the ball for an isoperimetric problem with strong capacitary repulsion
,” arXiv:2201.04376 [math.AP] (
2022
).
221.
Good
,
I. J.
, “
Short proof of a conjecture by Dyson
,”
J. Math. Phys.
11
,
1884
(
1970
).
222.
Götze
,
F.
, “
Lattice point problems and values of quadratic forms
,”
Invent. Math.
157
,
195
226
(
2004
).
223.
Graf
,
G. M.
and
Schenker
,
D.
, “
The free energy of systems with net charge
,”
Lett. Math. Phys.
35
,
75
83
(
1995
).
224.
Graf
,
G. M.
and
Schenker
,
D.
, “
On the molecular limit of Coulomb gases
,”
Commun. Math. Phys.
174
,
215
227
(
1995
).
225.
Gregg
,
J. N.
, “
The existence of the thermodynamic limit in Coulomb-like systems
,”
Commun. Math. Phys.
123
,
255
276
(
1989
).
226.
Grimes
,
C. C.
and
Adams
,
G.
, “
Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons
,”
Phys. Rev. Lett.
42
,
795
798
(
1979
).
227.
Groeneveld
,
J.
,
Statistical Mechanics: Foundations and Applications
, Proceedings of the IUPAP meeting, Copenhagen 1966 (International Union of Pure and Applied Physics IUPAP), edited by
T.
Bak
(
W. A. Benjamin
,
1967
).
228.
Gruber
,
C.
,
Lebowitz
,
J. L.
, and
Martin
,
P. A.
, “
Sum rules for inhomogeneous Coulomb systems
,”
J. Chem. Phys.
75
,
944
954
(
1981
).
229.
Gruber
,
C.
,
Lugrin
,
C.
, and
Martin
,
P. A.
, “
Equilibrium equations for classical systems with long range forces and application to the one dimensional Coulomb gas
,”
Helv. Phys. Acta
51
,
829
866
(
1978
).
230.
Gruber
,
C.
,
Lugrin
,
C.
, and
Martin
,
P. A.
, “
Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules
,”
J. Stat. Phys.
22
,
193
236
(
1980
).
231.
Gruber
,
C.
and
Martin
,
P.
, “
Translation invariance in statistical mechanics of classical continuous systems
,”
Ann. Phys.
131
,
56
72
(
1981
).
232.
Gruber
,
C.
,
Martin
,
P. A.
, and
Oguey
,
C.
, “
Euclidean invariance in statistical mechanics of classical continuous system
,”
Commun. Math. Phys.
84
,
55
69
(
1982
).
233.
Gruber
,
P. M.
, “
Application of an idea of Voronoï to lattice zeta functions
,”
Proc. Steklov Inst. Math.
276
,
103
124
(
2012
).
234.
Guhr
,
T.
,
Müller-Groeling
,
A.
, and
Weidenmüller
,
H. A.
, “
Random-matrix theories in quantum physics: Common concepts
,”
Phys. Rep.
299
,
189
425
(
1998
).
235.
Gunson
,
J.
, “
Proof of a conjecture by Dyson in the statistical theory of energy levels
,”
J. Math. Phys.
3
,
752
753
(
1962
).
236.
Gustafsson
,
B.
, “
Lectures on balayage
,” in
Clifford Algebras and Potential Theory
, University of Joensuu, Department of Mathematics Report Series Vol. 7 (
University Joensuu
,
Joensuu
,
2004
), pp.
17
63
.
237.
Gustafsson
,
B.
and
Putinar
,
M.
, “
Selected topics on quadrature domains
,”
Physica D
235
,
90
100
(
2007
).
238.
Gustafsson
,
B.
and
Shapiro
,
H. S.
, “
What is a quadrature domain?
,” in
Quadrature Domains and Their Applications
, Operator Theory: Advances and Applications Vol. 156 (
Birkhäuser
,
Basel
,
2005
), pp.
1
25
.
239.
Ha
,
Z. N. C.
, “
Exact dynamical correlation functions of Calogero-Sutherland model and one-dimensional fractional statistics
,”
Phys. Rev. Lett.
73
,
1574
1577
(
1994
).
240.
Hainzl
,
C.
,
Lewin
,
M.
, and
Solovej
,
J. P.
, “
The thermodynamic limit of quantum Coulomb systems. Part I. General theory
,”
221
,
454
487
(
2009
);
Hainzl
,
C.
,
Lewin
,
M.
, and
Solovej
,
J. P.
The thermodynamic limit of quantum Coulomb systems. Part II. Applications
,”
Adv. Math.
221
, 488–546 (
2009
).
241.
Haldane
,
F. D. M.
, “
Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids
,”
Phys. Rev. Lett.
47
,
1840
1843
(
1981
).
242.
Haldane
,
F. D. M.
, “
Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states
,”
Phys. Rev. Lett.
51
,
605
608
(
1983
).
243.
Haldane
,
F. D. M.
, “
‘Fractional statistics’ in arbitrary dimensions: A generalization of the Pauli principle
,”
Phys. Rev. Lett.
67
,
937
940
(
1991
).
244.
Hall
,
G. L.
, “
Correction to Fuchs’ calculation of the electrostatic energy of a Wigner solid
,”
Phys. Rev. B
19
,
3921
3932
(
1979
).
245.
Hall
,
G. L.
, “
Response to ‘Comment on the average potential of a Wigner solid
,’”
Phys. Rev. B
24
,
7415
7418
(
1981
).
246.
Hall
,
G. L.
and
Rice
,
T. R.
, “
Wigner solids, classical Coulomb lattices, and invariant average potential
,”
Phys. Rev. B
21
,
3757
3759
(
1980
).
247.
Halperin
,
B. I.
, “
Statistics of quasiparticles and the hierarchy of fractional quantized Hall states
,”
Phys. Rev. Lett.
52
,
1583
1586
(
1984
).
248.
Halperin
,
B. I.
and
Nelson
,
D. R.
, “
Theory of two-dimensional melting
,”
Phys. Rev. Lett.
41
,
121
124
(
1978
).
249.
Hansen
,
J. P.
,
Levesque
,
D.
, and
Weis
,
J. J.
, “
Self-diffusion in the two-dimensional, classical electron gas
,”
Phys. Rev. Lett.
43
,
979
982
(
1979
).
250.
Haq
,
R. U.
,
Pandey
,
A.
, and
Bohigas
,
O.
, “
Fluctuation properties of nuclear energy levels: Do theory and experiment agree?
,”
Phys. Rev. Lett.
48
,
1086
1089
(
1982
).
251.
Hardin
,
D. P.
,
Leblé
,
T.
,
Saff
,
E. B.
, and
Serfaty
,
S.
, “
Large deviation principles for hypersingular Riesz gases
,”
Constr. Approximation
48
,
61
100
(
2018
).
252.
Hardin
,
D. P.
,
Michaels
,
T. J.
, and
Saff
,
E. B.
, “
Asymptotic linear programming lower bounds for the energy of minimizing Riesz and Gauss configurations
,”
Mathematika
65
,
157
180
(
2019
).
253.
Hardin
,
D. P.
,
Reznikov
,
A.
,
Saff
,
E. B.
, and
Volberg
,
A.
, “
Local properties of Riesz minimal energy configurations and equilibrium measures
,”
Int. Math. Res. Not.
2019
,
5066
5086
.
254.
Hardin
,
D. P.
and
Saff
,
E. B.
, “
Discretizing manifolds via minimum energy points
,”
Not. AMS
51
,
1186
1194
(
2004
).
255.
Hardin
,
D. P.
and
Saff
,
E. B.
, “
Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds
,”
Adv. Math.
193
,
174
204
(
2005
).
256.
Hardin
,
D. P.
,
Saff
,
E. B.
, and
Simanek
,
B.
, “
Periodic discrete energy for long-range potentials
,”
J. Math. Phys.
55
,
123509
(
2014
).
257.
Hardin
,
D. P.
,
Saff
,
E. B.
,
Simanek
,
B. Z.
, and
Su
,
Y.
, “
Next order energy asymptotics for Riesz potentials on flat tori
,”
Int. Math. Res. Not.
2017
,
3529
3556
.
258.
Hardin
,
D. P.
,
Saff
,
E. B.
, and
Vlasiuk
,
O. V.
, “
Generating point configurations via hypersingular Riesz energy with an external field
,”
SIAM J. Math. Anal.
49
,
646
673
(
2017
).
259.
Hardin
,
D. P.
,
Saff
,
E. B.
, and
Whitehouse
,
J. T.
, “
Quasi-uniformity of minimal weighted energy points on compact metric spaces
,”
J. Complexity
28
,
177
191
(
2012
).
260.
Hayashi
,
Y.
and
Tachibana
,
K.
, “
Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma
,”
Jpn J. Appl. Phys.
33
,
L804
(
1994
).
261.
He
,
W. J.
,
Cui
,
T.
,
Ma
,
Y. M.
,
Liu
,
Z. M.
, and
Zou
,
G. T.
, “
Phase transition in a classical two-dimensional electron system
,”
Phys. Rev. B
68
,
195104
(
2003
).
262.
Herring
,
C.
, “
Discussion note on Ewald and Juretschke
,” in
Structure and Properties of Solid Surfaces
, edited by
Gomer
.
R.
and
Stanley
,
C.
(
University of Chicago Press
,
1952
), p.
117
, A Conference Arranged by The National Research Council, Lake Geneva, Wisconsin, September 1952.
263.
Hess
,
H. F.
,
Robinson
,
R. B.
,
Dynes
,
R. C.
,
Valles
,
J. M.
, and
Waszczak
,
J. V.
, “
Scanning-tunneling-microscope observation of the abrikosov flux lattice and the density of states near and inside a fluxoid
,”
Phys. Rev. Lett.
62
,
214
216
(
1989
).
264.
Hiraoka
,
N.
,
Yang
,
Y.
,
Hagiya
,
T.
,
Niozu
,
A.
,
Matsuda
,
K.
,
Huotari
,
S.
,
Holzmann
,
M.
, and
Ceperley
,
D. M.
, “
Direct observation of the momentum distribution and renormalization factor in lithium
,”
Phys. Rev. B
101
,
165124
(
2020
).
265.
Hohenberg
,
P.
and
Kohn
,
W.
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
266.
Holzmann
,
M.
and
Moroni
,
S.
, “
Itinerant-electron magnetism: The importance of many-body correlations
,”
Phys. Rev. Lett.
124
,
206404
(
2020
).
267.
Hoover
,
W. G.
,
Gray
,
S. G.
, and
Johnson
,
K. W.
, “
Thermodynamic properties of the fluid and solid phases for inverse power potentials
,”
J. Chem. Phys.
55
,
1128
1136
(
1971
).
268.
Hoover
,
W. G.
,
Ross
,
M.
,
Johnson
,
K. W.
,
Henderson
,
D.
,
Barker
,
J. A.
, and
Brown
,
B. C.
, “
Soft-sphere equation of state
,”
J. Chem. Phys.
52
,
4931
4941
(
1970
).
269.
Hoover
,
W. G.
,
Young
,
D. A.
, and
Grover
,
R.
, “
Statistical mechanics of phase diagrams. I. Inverse power potentials and the close-packed to body-centered cubic transition
,”
J. Chem. Phys.
56
,
2207
2210
(
1972
).
270.
van Hove
,
L.
, “
Quelques propriétés générales de l’intégrale de configuration d’un système de particules avec interaction
,”
Physica
15
,
951
961
(
1949
).
271.
van Hove
,
L.
, “
Sur l’intégrale de configuration pour les systèmes de particules à une dimension
,”
Physica
16
,
137
143
(
1950
).
272.
Hughes
,
R. I. G.
, “
Theoretical practice: The Bohm-Pines quartet
,”
Perspect. Sci.
14
,
457
524
(
2006
).
273.
Hughes
,
W.
, “
Thermodynamics for Coulomb systems: A problem at vanishing particle densities
,”
J. Stat. Phys.
41
,
975
1013
(
1985
).
274.
Huotari
,
S.
,
Soininen
,
J. A.
,
Pylkkänen
,
T.
,
Hämäläinen
,
K.
,
Issolah
,
A.
,
Titov
,
A.
,
McMinis
,
J.
,
Kim
,
J.
,
Esler
,
K.
,
Ceperley
,
D. M.
,
Holzmann
,
M.
, and
Olevano
,
V.
, “
Momentum distribution and renormalization factor in sodium and the electron gas
,”
Phys. Rev. Lett.
105
,
086403
(
2010
).
275.
Ihm
,
J.
and
Cohen
,
M. L.
, “
Comment on ‘Correction to Fuchs’ calculation of the electrostatic energy of a Wigner solid
,’”
Phys. Rev. B
21
,
3754
3756
(
1980
).
276.
Imbrie
,
J. Z.
, “
Debye screening for jellium and other Coulomb systems
,”
Commun. Math. Phys.
87
,
515
565
(
1982
).
277.
Isakov
,
S. B.
, “
Statistical mechanics for a class of quantum statistics
,”
Phys. Rev. Lett.
73
,
2150
2153
(
1994
).
278.
Ivić
,
A.
,
Krätzel
,
E.
,
Kühleitner
,
M.
, and
Nowak
,
W. G.
, “
Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic
,” in
Elementare und analytische Zahlentheorie
, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main Vol. 20 (
Franz Steiner Verlag Stuttgart
,
Stuttgart
,
2006
), pp.
89
128
.
279.
Jagannath
,
A.
and
Trogdon
,
T.
, “
Random matrices and the New York City subway system
,”
Phys. Rev. E
96
,
030101
(
2017
).
280.
Jancovici
,
B.
, “
Exact results for the two-dimensional one-component plasma
,”
Phys. Rev. Lett.
46
,
386
388
(
1981
).
281.
Jancovici
,
B.
and
Lebowitz
,
J. L.
, “
Bounded fluctuations and translation symmetry breaking: A solvable model
,”
J. Stat. Phys.
103
,
619
624
(
2001
), part of the Special Issue: Dedicated to the Memory of Joaquin M. Luttinger.
282.
Jancovici
,
B.
,
Lebowitz
,
J. L.
, and
Manificat
,
G.
, “
Large charge fluctuations in classical Coulomb systems
,”
J. Stat. Phys.
72
,
773
787
(
1993
).
283.
Jancovici
,
B.
and
Téllez
,
G.
, “
Two-dimensional Coulomb systems on a surface of constant negative curvature
,”
J. Stat. Phys.
91
,
953
977
(
1998
).
284.
Jansen
,
S.
and
Jung
,
P.
, “
Wigner crystallization in the quantum 1D jellium at all densities
,”
Commun. Math. Phys.
331
,
1133
(
2014
).
285.
Jansen
,
S.
,
Lieb
,
E. H.
, and
Seiler
,
R.
, “
Symmetry breaking in Laughlin’s state on a cylinder
,”
Commun. Math. Phys.
285
,
503
535
(
2009
).
286.
Jones
,
M. D.
and
Ceperley
,
D. M.
, “
Crystallization of the one-component plasma at finite temperature
,”
Phys. Rev. Lett.
76
,
4572
4575
(
1996
).
287.
Kapfer
,
S. C.
and
Krauth
,
W.
, “
Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions
,”
Phys. Rev. Lett.
114
,
035702
(
2015
).
288.
Kato
,
T.
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer
,
1995
).
289.
Katz
,
A.
and
Duneau
,
M.
, “
The convergence of the one-dimensional ground states to an infinite lattice
,”
J. Stat. Phys.
37
,
257
268
(
1984
).
290.
Kethepalli
,
J.
,
Kulkarni
,
M.
,
Kundu
,
A.
,
Majumdar
,
S. N.
,
Mukamel
,
D.
, and
Schehr
,
G.
, “
Harmonically confined long-ranged interacting gas in the presence of a hard wall
,”
J. Stat. Mech. Theory Exp.
2021
,
103209
.
291.
Kethepalli
,
J.
,
Kulkarni
,
M.
,
Kundu
,
A.
,
Majumdar
,
S. N.
,
Mukamel
,
D.
, and
Schehr
,
G.
, “
Edge fluctuations and third-order phase transition in harmonically confined long-range systems
,”
J. Stat. Mech.: Theory Exp.
2022
,
033203
.
292.
Kiessling
,
M. K.-H.
, “
On the equilibrium statistical mechanics of isothermal classical self-gravitating matter
,”
J. Stat. Phys.
55
,
203
257
(
1989
).
293.
Kiessling
,
M. K.-H.
, “
Statistical mechanics of classical particles with logarithmic interactions
,”
Commun. Pure Appl. Math.
46
,
27
56
(
1993
).
294.
Kiessling
,
M. K.-H.
and
Spohn
,
H.
, “
A note on the eigenvalue density of random matrices
,”
Commun. Math. Phys.
199
,
683
695
(
1999
).
295.
Killip
,
R.
and
Nenciu
,
I.
, “
Matrix models for circular ensembles
,”
Int. Math. Res. Not.
2004
,
2665
2701
.
296.
Killip
,
R.
and
Stoiciu
,
M.
, “
Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles
,”
Duke Math. J.
146
,
361
399
(
2009
).
297.
Klevtsov
,
S.
, “
Geometry and large N limits in Laughlin states
,” in
Geometry and Quantization
,
Lectures presented at the 6th school GEOQUANT, ICMAT, Madrid, Spain, September 7–18, 2015
(
University of Luxembourg, Faculty of Science, Technology and Communication
,
Luxembourg
,
2016
), pp.
63
127
.
298.
Klevtsov
,
S.
,
Ma
,
X.
,
Marinescu
,
G.
, and
Wiegmann
,
P.
, “
Quantum Hall effect and quillen metric
,”
Commun. Math. Phys.
349
,
819
855
(
2017
).
299.
Knighton
,
T.
,
Wu
,
Z.
,
Huang
,
J.
,
Serafin
,
A.
,
Xia
,
J. S.
,
Pfeiffer
,
L. N.
, and
West
,
K. W.
, “
Evidence of two-stage melting of Wigner solids
,”
Phys. Rev. B
97
,
085135
(
2018
).
300.
Kohn
,
W.
and
Sham
,
L. J.
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
301.
Kosterlitz
,
J. M.
and
Thouless
,
D. J.
, “
Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory)
,”
J. Phys. C: Solid State Phys.
5
,
L124
(
1972
).
302.
Kosterlitz
,
J. M.
and
Thouless
,
D. J.
, “
Ordering, metastability and phase transitions in two-dimensional systems
,”
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
303.
Krbálek
,
M.
and
Šeba
,
P.
, “
The statistical properties of the city transport in Cuernavaca (Mexico) and random matrix ensembles
,”
J. Phys. A: Math. Gen.
33
,
L229
L234
(
2000
).
304.
Kuijlaars
,
A. B. J.
and
Miña-Díaz
,
E.
, “
Universality for conditional measures of the sine point process
,”
J. Approximation Theory
243
,
1
24
(
2019
).
305.
Kuijlaars
,
A.
and
Saff
,
E.
, “
Asymptotics for minimal discrete energy on the sphere
,”
Trans. Am. Math. Soc.
350
,
523
538
(
1998
).
306.
Kunz
,
H.
, “
The one-dimensional classical electron gas
,”
Ann. Phys.
85
,
303
335
(
1974
).
307.
Lacroix-A-Chez-Toine
,
B.
,
Majumdar
,
S. N.
, and
Schehr
,
G.
, “
Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the entanglement entropy and number variance
,”
Phys. Rev. A
99
,
021602
(
2019
).
308.
Lahbabi
,
S.
, “
Etude mathématique de modèles quantiques et classiques pour les matériaux aléatoires à l’échelle atomique
,” Ph.D. thesis,
Université de Cergy-Pontoise
,
2013
.
309.
Laird
,
B. B.
and
Haymet
,
A. D. J.
, “
Phase diagram for the inverse sixth power potential system from molecular dynamics computer simulation
,”
Mol. Phys.
75
,
71
80
(
1992
).
310.
Landau
,
E.
, “
Zur analytischen zahlentheorie der definiten quadratischen Formen
,”
Berl. Akademieber
31
,
458
476
(
1915
).
311.
Landau
,
E.
, “
Über gitterpunkte in mehrdimensionalen ellipsoiden
,”
Math. Z.
21
,
126
132
(
1924
).
312.
Landkof
,
N. S.
,
Foundations of Modern Potential Theory
(
Springer-Verlag
,
New York; Heidelberg
,
1972
), pp.
x+424
, translated from the Russian by A. P. Doohovskoy, Die Grundlehren der Mathematischen Wissenschaften, Band 180.
313.
Lanford
,
O. E.
, “
Entropy and equilibrium states in classical statistical mechanics
,” in
Statistical Mechanics and Mathematical Problems
, Lecture Notes in Physics Vol. 20, edited by
A.
Lenard
(
Springer
,
Berlin, Heidelberg
,
1973
), pp.
1
113
.
314.
Lanford
 III,
O. E.
and
D.
Ruelle
, “
Observables at infinity and states with short range correlations in statistical mechanics
,”
Commun. Math. Phys.
13
,
194
215
(
1969
).
315.
Laughlin
,
R. B.
, “
Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations
,”
Phys. Rev. Lett.
50
,
1395
1398
(
1983
).
316.
Lauritsen
,
A. B.
, “
Floating Wigner crystal and periodic jellium configurations
,”
J. Math. Phys.
62
,
083305
(
2021
).
317.
Leblé
,
T.
, “
A uniqueness result for minimizers of the 1D log-gas renormalized energy
,”
J. Funct. Anal.
268
,
1649
1677
(
2015
).
318.
Leblé
,
T.
, “
Logarithmic, Coulomb and Riesz energy of point processes
,”
J. Stat. Phys.
162
,
887
923
(
2016
).
319.
Leblé
,
T.
, “
Local microscopic behavior for 2D Coulomb gases
,”
Probab. Theory Relat. Fields
169
,
931
976
(
2017
).
320.
Leblé
,
T.
and
Serfaty
,
S.
, “
Large deviation principle for empirical fields of log and Riesz gases
,”
Invent. Math.
210
,
645
757
(
2017
).
321.
Lebowitz
,
J. L.
, “
Charge fluctuations in Coulomb systems
,”
Phys. Rev. A
27
,
1491
1494
(
1983
).
322.
Lebowitz
,
J. L.
and
Martin
,
P. A.
, “
On potential and field fluctuations in classical charged systems
,”
J. Stat. Phys.
34
,
287
311
(
1984
).
323.
Lebowitz
,
J. L.
and
Percus
,
J. K.
, “
Long-range correlations in a closed system with applications to nonuniform fluids
,”
Phys. Rev.
122
,
1675
1691
(
1961
).
324.
Lebowitz
,
J. L.
and
Percus
,
J. K.
, “
Statistical thermodynamics of nonuniform fluids
,”
J. Math. Phys.
4
,
116
123
(
1963
).
325.
de Leeuw
,
S. W.
and
Perram
,
J. W.
, “
Statistical mechanics of two-dimensional Coulomb systems: II. The two-dimensional one-component plasma
,”
Physica A
113
,
546
558
(
1982
).
326.
Leinaas
,
J. M.
and
Myrheim
,
J.
, “
On the theory of identical particles
,”
Nuovo Cimento B
37
,
1
23
(
1977
).
327.
Lenard
,
A.
, “
Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field
,”
J. Math. Phys.
4
,
533
543
(
1963
).
328.
Lenard
,
A.
and
Dyson
,
F. J.
, “
Stability of matter. II
,”
J. Math. Phys.
9
,
698
711
(
1968
).
329.
Lewin
,
M.
and
Lieb
,
E. H.
, “
Improved Lieb-Oxford exchange-correlation inequality with gradient correction
,”
Phys. Rev. A
91
,
022507
(
2015
); arXiv:1408.3358 [math-ph].
330.
Lewin
,
M.
,
Lieb
,
E. H.
, and
Seiringer
,
R.
, “
Statistical mechanics of the uniform electron gas
,”
J. Ec. Polytech. Math.
5
,
79
116
(
2018
).
331.
Lewin
,
M.
,
Lieb
,
E. H.
, and
Seiringer
,
R.
, “
Floating Wigner crystal with no boundary charge fluctuations
,”
Phys. Rev. B
100
,
035127
(
2019
).
332.
Lewin
,
M.
,
Lieb
,
E. H.
, and
Seiringer
,
R.
, “
The local density approximation in density functional theory
,”
Pure Appl. Anal.
2
,
35
73
(
2019
).
333.
Lewin
,
M.
,
Lieb
,
E. H.
, and
Seiringer
,
R.
, “
Universal functionals in density functional theory
,” arXiv:1912.10424 (
2020
), chapter in a book “Density Functional Theory” edited by Éric Cancès,
Gero Friesecke & Lin Lin
.
334.
Lewin
,
M.
and
Seiringer
,
R.
, “
Strongly correlated phases in rapidly rotating Bose gases
,”
J. Stat. Phys.
137
,
1040
1062
(
2009
).
335.
Lewis
,
J. T.
, “
The large deviation principle in statistical mechanics: An expository account
,” in
Stochastic Mechanics and Stochastic Processes (Swansea, 1986)
, Lecture Notes in Mathematics Vol. 1325 (
Springer
,
Berlin
,
1988
), pp.
141
155
.
336.
Lewis
,
J. T.
, “
Limit theorems for stochastic processes associated with a boson gas
,” in
Mark Kac Seminar on Probability and Physics. Syllabus 1985–1987 (Amsterdam, 1985–1987)
, CWI Syllabus Vol. 17 (
Math. Centrum, Centrum Wisk. Inform.
,
Amsterdam
,
1988
), pp.
137
146
.
337.
Lewis
,
J. T.
,
Zagrebnov
,
V. A.
, and
Pulé
,
J. V.
, “
The large deviation principle for the Kac distribution
,”
Helv. Phys. Acta
61
,
1063
1078
(
1988
).
338.
Li
,
H.
,
Li
,
S.
,
Regan
,
E. C.
,
Wang
,
D.
,
Zhao
,
W.
,
Kahn
,
S.
,
Yumigeta
,
K.
,
Blei
,
M.
,
Taniguchi
,
T.
,
Watanabe
,
K.
,
Tongay
,
S.
,
Zettl
,
A.
,
Crommie
,
M. F.
, and
Wang
,
F.
, “
Imaging two-dimensional generalized Wigner crystals
,”
Nature
597
,
650
654
(
2021
).
339.
Lieb
,
E. H.
and
Lebowitz
,
J. L.
, “
The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei
,”
Adv. Math.
9
,
316
398
(
1972
).
340.
Lieb
,
E. H.
and
Loss
,
M.
,
Analysis
, 2nd ed., Graduate Studies in Mathematics Vol. 14 (
American Mathematical Society
,
Providence, RI
,
2001
), pp.
xxii+346
.
341.
Lieb
,
E. H.
and
Narnhofer
,
H.
, “
The thermodynamic limit for jellium
,”
J. Stat. Phys.
12
,
291
310
(
1975
).
342.
Lieb
,
E. H.
,
Rougerie
,
N.
, and
Yngvason
,
J.
, “
Rigidity of the Laughlin liquid
,”
J. Stat. Phys.
172
,
544
554
(
2018
).
343.
Lieb
,
E. H.
,
Rougerie
,
N.
, and
Yngvason
,
J.
, “
Local incompressibility estimates for the Laughlin phase
,”
Commun. Math. Phys.
365
,
431
470
(
2019
).
344.
Lieb
,
E. H.
and
Seiringer
,
R.
,
The Stability of Matter in Quantum Mechanics
(
Cambridge University Press
,
2010
).
345.
Lieb
,
E. H.
and
Simon
,
B.
, “
The Thomas-Fermi theory of atoms, molecules and solids
,”
Adv. Math.
23
,
22
116
(
1977
).
346.
Likos
,
C. N.
, “
Effective interactions in soft condensed matter physics
,”
Phys. Rep.
348
,
267
439
(
2001
).
347.
Lin
,
S. Z.
,
Zheng
,
B.
, and
Trimper
,
S.
, “
Computer simulations of two-dimensional melting with dipole-dipole interactions
,”
Phys. Rev. E
73
,
066106
(
2006
).
348.
Loos
,
P.-F.
and
Gill
,
P. M. W.
, “
Thinking outside the box: The uniform electron gas on a hypersphere
,”
J. Chem. Phys.
135
,
214111
(
2011
).
349.
Loos
,
P.-F.
and
Gill
,
P. M. W.
, “
Uniform electron gases. I. Electrons on a ring
,”
J. Chem. Phys.
138
,
164124
(
2013
).
350.
Loos
,
P.-F.
and
Gill
,
P. M. W.
, “
The uniform electron gas
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
410
429
(
2016
).
351.
Lugrin
,
C.
and
Martin
,
P. A.
, “
Functional integration treatment of one-dimensional ionic mixtures
,”
J. Math. Phys.
23
,
2418
2429
(
1982
).
352.
Theory of the Inhomogeneous Electron Gas
, Physics of Solids and Liquids, edited by
Lundqvist
,
S.
and
March
,
N.
(
Springer
,
1983
).
353.
Madelung
,
E.
, “
Das elektrische feld in systemen von regelmäßig angeordneten punktladungen
,”
Phys. Z.
19
,
524
533
(
1918
).
354.
Madison
,
K. W.
,
Chevy
,
F.
,
Wohlleben
,
W.
, and
Dalibard
,
J.
, “
Vortex formation in a stirred Bose-Einstein condensate
,”
Phys. Rev. Lett.
84
,
806
809
(
2000
).
355.
Marchioro
,
C.
and
Presutti
,
E.
, “
Thermodynamics of particle systems in the presence of external macroscopic fields. I. Classical case
,”
Commun. Math. Phys.
27
,
146
154
(
1972
).
356.
Martin
,
J.
,
Ilani
,
S.
,
Verdene
,
B.
,
Smet
,
J.
,
Umansky
,
V.
,
Mahalu
,
D.
,
Schuh
,
D.
,
Abstreiter
,
G.
, and
Yacoby
,
A.
, “
Localization of fractionally charged quasi-particles
,”
Science
305
,
980
983
(
2004
).
357.
Martin
,
P. A.
, “
Sum rules in charged fluids
,”
Rev. Mod. Phys.
60
,
1075
1127
(
1988
).
358.
Martin
,
P. A.
and
Yalcin
,
T.
, “
The charge fluctuations in classical Coulomb systems
,”
J. Stat. Phys.
22
,
435
463
(
1980
).
359.
Martinelli
,
F.
and
Merlini
,
D.
, “
A refined Mermin argument for the two-dimensional jellium
,”
J. Stat. Phys.
34
,
313
318
(
1984
).
360.
Martínez-Finkelshtein
,
A.
,
Maymeskul
,
V.
,
Rakhmanov
,
E. A.
, and
Saff
,
E. B.
, “
Asymptotics for minimal discrete Riesz energy on curves in Rd
,”
Can. J. Math.
56
,
529
552
(
2004
).
361.
Mazars
,
M.
, “
Long ranged interactions in computer simulations and for quasi-2D systems
,”
Phys. Rep.
500
,
43
116
(
2011
).
362.
Mazars
,
M.
, “
The melting of the classical two-dimensional Wigner crystal
,”
Europhys. Lett.
110
,
26003
(
2015
).
363.
Mazars
,
M.
and
Salazar
,
R.
, “
Topological defects in the two-dimensional melting
,”
Europhys. Lett.
126
,
56002
(
2019
).
364.
Mehta
,
M. L.
,
Random Matrices
, 3rd ed., Pure and Applied Mathematics Vol. 142 (
Elsevier; Academic Press
,
Amsterdam
,
2004
), p.
xviii+688
.
365.
Mehta
,
M. L.
and
Dyson
,
F. J.
, “
Statistical theory of the energy levels of complex systems. V
,”
J. Math. Phys.
4
,
713
719
(
1963
).
366.
Mermin
,
N. D.
, “
Absence of ordering in certain classical systems
,”
J. Math. Phys.
8
,
1061
1064
(
1967
).
367.
Mermin
,
N. D.
, “
Crystalline order in two dimensions
,”
Phys. Rev.
176
,
250
254
(
1968
).
368.
Mermin
,
N. D.
and
Wagner
,
H.
, “
Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
,
1133
1136
(
1966
).
369.
Messer
,
J.
and
Spohn
,
H.
, “
Statistical mechanics of the isothermal Lane-Emden equation
,”
J. Stat. Phys.
29
,
561
578
(
1982
).
370.
Millard
,
K.
, “
A statistical mechanical approach to the problem of a fluid in an external field
,”
J. Math. Phys.
13
,
222
226
(
1972
).
371.
Montgomery
,
H. L.
, “
The pair correlation of zeros of the zeta function
,” in
Analytic Number Theory
, Proceedings of Symposia in Pure Mathematics Vol. XXIV (
St. Louis University
,
St. Louis, MO
,
1972
), pp.
181
193
.
372.
Montgomery
,
H. L.
, “
Minimal theta functions
,”
Glasgow Math. J.
30
,
75
85
(
1988
).
373.
Moore
,
M. A.
and
Pérez-Garrido
,
A.
, “
Absence of a finite-temperature melting transition in the classical two-dimensional one-component plasma
,”
Phys. Rev. Lett.
82
,
4078
4081
(
1999
).
374.
Moser
,
J.
, “
Three integrable Hamiltonian systems connected with isospectral deformations
,”
Adv. Math.
16
,
197
220
(
1975
).
375.
Murray
,
C. A.
and
Van Winkle
,
D. H.
, “
Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system
,”
Phys. Rev. Lett.
58
,
1200
1203
(
1987
).
376.
Murthy
,
M. V. N.
and
Shankar
,
R.
, “
Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics
,”
Phys. Rev. Lett.
73
,
3331
3334
(
1994
).
377.
Muto
,
S.
and
Aoki
,
H.
, “
Crystallization of a classical two-dimensional electron system: Positional and orientational orders
,”
Phys. Rev. B
59
,
14911
14914
(
1999
).
378.
Myrheim
,
J.
, “
Anyons
,” in , Les Houches-École d’Été de Physique Théorique Vol. 69, edited by
Comtet
,
A.
,
Jolicœur
,
T.
,
Ouvry
,
S.
, and
David
,
F.
(
Springer
,
1999
), pp.
265
413
.
379.
Nakano
,
F.
, “
Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble
,”
J. Stat. Phys.
156
,
66
93
(
2014
).
380.
Nelson
,
D. R.
and
Halperin
,
B. I.
, “
Dislocation-mediated melting in two dimensions
,”
Phys. Rev. B
19
,
2457
2484
(
1979
).
381.
Nemkov
,
N.
and
Klevtsov
,
S.
, “
Liouville perturbation theory for Laughlin state and Coulomb gas
,”
J. Phys. A: Math. Gen.
54
,
335204
(
2021
).
382.
Nijboer
,
B. R. A.
, “
On a relation between the scattering cross-section in dense media and the energy of a dilute electron gas
,”
Philips Res. Rep.
30
,
74
(
1975
).
383.
Nijboer
,
B. R. A.
and
Ruijgrok
,
T. W.
, “
On the energy per particle in three- and two-dimensional Wigner lattices
,”
J. Stat. Phys.
53
,
361
382
(
1988
).
384.
Nonnenmacher
,
S.
and
Voros
,
A.
, “
Chaotic eigenfunctions in phase space
,”
J. Stat. Phys.
92
,
431
518
(
1998
).
385.
Odlyzko
,
A. M.
, “
On the distribution of spacings between zeros of the zeta function
,”
Math. Comput.
48
,
273
308
(
1987
).
386.
Onsager
,
L.
, “
Electrostatic interaction of molecules
,”
J. Phys. Chem.
43
,
189
196
(
1939
).
387.
Osgood
,
B.
,
Phillips
,
R.
, and
Sarnak
,
P.
, “
Extremals of determinants of Laplacians
,”
J. Funct. Anal.
80
,
148
211
(
1988
).
388.
Papangelou
,
F.
, “
On the absence of phase transition in continuous one-dimensional Gibbs systems with no hard core
,”
Probab. Theory Relat. Fields
74
,
485
496
(
1987
).
389.
Park
,
Y. M.
, “
Massless quantum sine-Gordon equation in two space-time dimensions: Correlation inequalities and infinite volume limit
,”
J. Math. Phys.
18
,
2423
2426
(
1977
).
390.
Parr
,
R.
and
Yang
,
W.
,
Density-Functional Theory of Atoms and Molecules
, International Series of Monographs on Chemistry (
Oxford University Press
,
1994
).
391.
Pass
,
B.
, “
Multi-marginal optimal transport: Theory and applications
,”
ESAIM Math. Model. Numer. Anal.
49
,
1771
1790
(
2015
).
392.
Paulin
,
S. E.
,
Ackerson
,
B. J.
, and
Wolfe
,
M. S.
, “
Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres
,”
J. Colloid Interface Sci.
178
,
251
262
(
1996
).
393.
Penrose
,
O.
, “
Convergence of fugacity expansions for fluids and lattice gases
,”
J. Math. Phys.
4
,
1312
1320
(
1963
).
394.
Penrose
,
O.
and
Smith
,
E. R.
, “
Thermodynamic limit for classical systems with Coulomb interactions in a constant external field
,”
Commun. Math. Phys.
26
,
53
77
(
1972
).
395.
Perdew
,
J. P.
, “
Unified theory of exchange and correlation beyond the local density approximation
,” in
Electronic Structure of Solids ’91
, edited by
Ziesche
,
P.
and
Eschrig
,
H.
(
Akademie Verlag
,
Berlin
,
1991
), pp.
11
20
.
396.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
397.
Perdew
,
J. P.
and
Kurth
,
S.
, “
Density functionals for non-relativistic Coulomb systems in the new century
,” in
A Primer in Density Functional Theory
, edited by
Fiolhais
,
C.
,
Nogueira
,
F.
, and
Marques
,
M. A. L.
(
Springer
,
Berlin, Heidelberg
,
2003
), pp.
1
55
.
398.
Perdew
,
J. P.
and
Wang
,
Y.
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
399.
Peres
,
Y.
and
Sly
,
A.
, “
Rigidity and tolerance for perturbed lattices
,” arXiv:1409.4490 [math.PR] (
2014
).
400.
Petrache
,
M.
and
Rota Nodari
,
S.
, “
Equidistribution of jellium energy for Coulomb and Riesz interactions
,”
Constr. Approximation
47
,
163
210
(
2018
).
401.
Petrache
,
M.
and
Serfaty
,
S.
, “
Next order asymptotics and renormalized energy for Riesz interactions
,”
J. Inst. Math. Jussieu
16
,
501
569
(
2017
).
402.
Petrache
,
M.
and
Serfaty
,
S.
, “
Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture
,”
Proc. Am. Math. Soc.
148
,
3047
3057
(
2020
).
403.
Placzek
,
G.
,
Nijboer
,
B. R. A.
, and
Van Hove
,
L.
, “
Effect of short wavelength interference on neuteron scattering by dense systems of heavy nuclei
,”
Phys. Rev.
82
,
392
403
(
1951
).
404.
Pollock
,
E. L.
and
Hansen
,
J. P.
, “
Statistical mechanics of dense ionized matter. II. Equilibrium properties and melting transition of the crystallized one-component plasma
,”
Phys. Rev. A
8
,
3110
3122
(
1973
).
405.
Prager
,
S.
, “
The one-dimensional plasma
,” in
Advances in Chemical Physics
(
Interscience
,
New York
,
1962
), Vol. IV, pp.
201
224
.
406.
Prestipino
,
S.
,
Saija
,
F.
, and
Giaquinta
,
P. V.
, “
Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials
,”
J. Chem. Phys.
123
,
144110
(
2005
).
407.
Preston
,
C. J.
,
Gibbs States on Countable Sets
, Cambridge Tracts in Mathematics Vol. 68 (
Cambridge University Press
,
London; New York
,
1974
), pp.
ix+128
.
408.
Radin
,
C.
, “
Low temperature and the origin of crystalline symmetry
,”
Int. J. Mod. Phys. B
1
,
1157
1191
(
1987
).
409.
Rankin
,
R. A.
, “
A minimum problem for the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
1
,
149
158
(
1953
).
410.
Rebenko
,
A. L.
, “
Mathematical foundations of the equilibrium classical statistical mechanics of charged particles
,”
Usp. Mat. Nauk
43
,
65
(
1988
).
411.
Reda
,
C.
and
Najnudel
,
J.
, “
Rigidity of the Sineβ process
,”
Electron. Commun. Probab.
23
,
1
8
(
2018
).
412.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics. IV. Analysis of Operators
(
Academic Press
,
New York
,
1978
), pp.
xv+396
.
413.
Requardt
,
M.
and
Wagner
,
H. J.
, “
Wigner crystallization and its relation to the poor decay of pair correlations in one-component plasmas of arbitrary dimension
,”
J. Stat. Phys.
58
,
1165
1180
(
1990
).
414.
Riesz
,
M.
, “
Intégrales de Riemann–Liouville et potentiels
,”
Acta Sci. Math.
9
,
1
42
(
1938; 1940
).
415.
Ros-Oton
,
X.
and
Serra
,
J.
, “
Regularity theory for general stable operators
,”
J. Differ. Equations
260
,
8675
8715
(
2016
).
416.
Ros-Oton
,
X.
and
Serra
,
J.
, “
Boundary regularity estimates for nonlocal elliptic equations in C1 and C1,α domains
,”
Ann. Mat. Pura Appl.
196
(
4
),
1637
1668
(
2017
).
417.
Rota Nodari
,
S.
and
Serfaty
,
S.
, “
Renormalized energy equidistribution and local charge balance in 2D Coulomb system
,”
Int. Math. Res. Not.
11
,
3035
3093
(
2015
).
418.
Rougerie
,
N.
, “
De Finetti theorems, mean-field limits and Bose-Einstein condensation
,” arXiv:1506.05263 [math-ph] (
2015
).
419.
Rougerie
,
N.
, “
The classical Jellium and the Laughlin phase
,” arXiv:2203.06952 [math.AP] (
2022
).
420.
Rougerie
,
N.
and
Serfaty
,
S.
, “
Higher dimensional Coulomb gases and renormalized energy functionals
,”
Commun. Pure Appl. Math.
69
,
519
605
(
2016
).
421.
Rougerie
,
N.
,
Serfaty
,
S.
, and
Yngvason
,
J.
, “
Quantum Hall phases and plasma analogy in rotating trapped Bose gases
,”
J. Stat. Phys.
154
,
2
(
2013
).
422.
Rudnick
,
Z.
and
Sarnak
,
P.
, “
Zeros of principal L-functions and random matrix theory
,”
Duke Math. J.
81
,
269
322
(
1996
), a celebration of John F. Nash, Jr.
423.
Ruelle
,
D.
, “
Classical statistical mechanics of a system of particles
,”
Helv. Phys. Acta
36
,
183
197
(
1963
).
424.
Ruelle
,
D.
, “
Correlation functions of classical gases
,”
Ann. Phys.
25
,
109
120
(
1963
).
425.
Ruelle
,
D.
, “
Cluster property of the correlation functions of classical gases
,”
Rev. Mod. Phys.
36
,
580
584
(
1964
).
426.
Ruelle
,
D.
, “
Superstable interactions in classical statistical mechanics
,”
Commun. Math. Phys.
18
,
127
159
(
1970
).
427.
Ruelle
,
D.
,
Statistical Mechanics. Rigorous Results
(
World Scientific; Imperial College Press
,
Singapore; London
,
1999
).
428.
Ruijsenaars
,
S.
, “
Action-angle maps and scattering theory for some finite-dimensional integrable systems. III. Sutherland type systems and their duals
,”
Publ. Res. Inst. Math. Sci.
31
,
247
353
(
1995
).
429.
Ryškov
,
S. S.
, “
On the question of the final ζ-optimality of lattices that yield the densest packing of n-dimensional balls
,”
Sib. Math. J.
14
,
743
750
(
1973
).
430.
Saff
,
E. B.
and
Kuijlaars
,
A. B. J.
, “
Distributing many points on a sphere
,”
Math. Intell.
19
,
5
11
(
1997
).
431.
Saka
,
M.
,
Quadrature Domains
, Lecture Notes in Mathematics Vol. 934 (
Springer-Verlag
,
Berlin; New York
,
1982
), pp.
i+133
.
432.
Salazar
,
R.
, “
Exact results and melting theories in two-dimensional systems
,” Ph.D. thesis,
Université Paris Saclay; Universidad de los Andes (Bogotá)
,
2017
.
433.
Salazar
,
R.
and
Téllez
,
G.
, “
Exact energy computation of the one component plasma on a sphere for even values of the coupling parameter
,”
J. Stat. Phys.
164
,
969
999
(
2016
).
434.
Salpeter
,
E. E.
, “
Energy and pressure of a zero-temperature plasma
,”
Astrophys. J.
134
,
669
(
1961
).
435.
Salzberg
,
A. M.
and
Prage
,
S.
, “
Equation of state for a two-dimensional electrolyte
,”
J. Chem. Phys.
38
,
2587
(
1963
).
436.
Saminadayar
,
L.
,
Glattli
,
D. C.
,
Jin
,
Y.
, and
Etienne
,
B.
, “
Observation of the e/3 fractionally charged Laughlin quasiparticle
,”
Phys. Rev. Lett.
79
,
2526
2529
(
1997
).
437.
Sandier
,
E.
and
Serfaty
,
S.
, “
From the Ginzburg-Landau model to vortex lattice problems
,”
Commun. Math. Phys.
313
,
635
743
(
2012
).
438.
Sandier
,
E.
and
Serfaty
,
S.
, “
1D log gases and the renormalized energy: Crystallization at vanishing temperature
,”
Probab. Theory Relat. Fields
162
,
795
(
2014
).
439.
Sandier
,
E.
and
Serfaty
,
S.
, “
2D Coulomb gases and the renormalized energy
,”
Ann. Probab.
43
,
2026
2083
(
2015
).
440.
Santra
,
S.
,
Kethepalli
,
J.
,
Agarwal
,
S.
,
Dhar
,
A.
,
Kulkarni
,
M.
, and
Kundu
,
A.
, “
Gap statistics for confined particles with power-law interactions
,” arXiv:2109.15026 [cond-mat.stat-mech] (
2021
).
441.
Sari
,
R. R.
and
Merlini
,
D.
, “
On the ν-dimensional one-component classical plasma: The thermodynamic limit problem revisited
,”
J. Stat. Phys.
14
,
91
100
(
1976
).
442.
Sari
,
R. R.
,
Merlini
,
D.
, and
Calinon
,
R.
, “
On the ground state of the one-component classical plasma
,”
J. Phys. A: Math. Gen.
9
,
1539
1551
(
1976
).
443.
Sarnak
,
P.
and
Strömbergsson
,
A.
, “
Minima of Epstein’s zeta function and heights of flat tori
,”
Invent. Math.
165
,
115
151
(
2006
).
444.
Schulz
,
H.
, “
Pairing transition of a one-dimensional classical plasma
,”
J. Phys. A: Math. Gen.
14
,
3277
3300
(
1981
).
445.
Schwartz
,
L.
,
Théorie des distributions
, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X (
Hermann
,
Paris
,
1966
), p.
xiii+420
, nouvelle édition, entièrement corrigée, refondue et augmentée.
446.
Šeba
,
P.
, “
Parking in the city
,”
Acta Phys. Pol., A
112
,
681
690
(
2007
).
447.
Šeba
,
P.
, “
Parking and the visual perception of space
,”
J. Stat. Mech.: Theory Exp.
2009
,
L10002
.
448.
Seidl
,
M.
and
Perdew
,
J. P.
, “
Size-dependent ionization energy of a metallic cluster: Resolution of the classical image-potential paradox
,”
Phys. Rev. B
50
,
5744
5747
(
1994
).
449.
Seiringer
,
R.
and
Yngvason
,
J.
, “
Emergence of Haldane pseudo-potentials in systems with short-range interactions
,”
J. Stat. Phys.
181
,
448
464
(
2020
).
450.
Senff
,
H.
and
Richtering
,
W.
, “
Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres
,”
J. Chem. Phys.
111
,
1705
1711
(
1999
).
451.
Serfaty
,
S.
, “
Ginzburg–Landau vortices, Coulomb gases, and Abrikosov lattices
,”
C. R. Phys.
15
,
539
546
(
2014
).
452.
Serfaty
,
S.
, “
Microscopic description of log and Coulomb gases
,” in
Random Matrices
, IAS/Park City Mathematics Series Vol. 26 (
American Mathematical Society
,
Providence, RI
,
2019
), pp.
341
387
.
453.
Shapir
,
I.
,
Hamo
,
A.
,
Pecker
,
S.
,
Moca
,
C. P.
,
Legeza
,
Ö.
,
Zarand
,
G.
, and
Ilani
,
S.
, “
Imaging the electronic Wigner crystal in one dimension
,”
Science
364
,
870
875
(
2019
).
454.
Sholl
,
C. A.
, “
The calculation of electrostatic energies of metals by plane-wise summation
,”
Proc. Phys. Soc.
92
,
434
(
1967
).
455.
Simmons
,
C. S.
and
Garrod
,
C.
, “
The density of a nonuniform system in the thermodynamic limit
,”
J. Math. Phys.
14
,
1075
1087
(
1973
).
456.
Simons
,
B. D.
,
Szafer
,
A.
, and
Altshuler
,
B. L.
, “
Universality in quantum chaotic spectra
,”
JETP Lett.
57
,
276
(
1993
).
457.
Smale
,
S.
, “
Mathematical problems for the next century
,”
Math. Intell.
20
,
7
15
(
1998
).
458.
Smith
,
E. R.
and
Penrose
,
O.
, “
An upper bound on the free energy for classical systems with Coulomb interactions in a varying external field
,”
Commun. Math. Phys.
40
,
197
213
(
1975
).
459.
Smoleński
,
T.
,
Dolgirev
,
P. E.
,
Kuhlenkamp
,
C.
,
Popert
,
A.
,
Shimazaki
,
Y.
,
Back
,
P.
,
Lu
,
X.
,
Kroner
,
M.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Esterlis
,
I.
,
Demler
,
E.
, and
Imamoǧlu
,
A.
, “
Signatures of Wigner crystal of electrons in a monolayer semiconductor
,”
Nature
595
,
53
57
(
2021
).
460.
So
,
P.
,
Anlage
,
S. M.
,
Ott
,
E.
, and
Oerter
,
R. N.
, “
Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics
,”
Phys. Rev. Lett.
74
,
2662
2665
(
1995
).
461.
Soshnikov
,
A.
, “
Determinantal random point fields
,”
Usp. Mat. Nauk
55
,
107
160
(
2000
).
462.
Stephenson
,
A.
, “
Studies of the one component plasma
,” Ph.D. thesis,
University of Manchester
,
2003
.
463.
Stormer
,
H. L.
,
Tsui
,
D. C.
, and
Gossard
,
A. C.
, “
The fractional quantum Hall effect
,”
Rev. Mod. Phys.
71
,
S298
S305
(
1999
).
464.
Strandburg
,
K. J.
, “
Two-dimensional melting
,”
Rev. Mod. Phys.
60
,
161
207
(
1988
).
465.
Sun
,
J.
,
Perdew
,
J. P.
, and
Ruzsinszky
,
A.
, “
Semilocal density functional obeying a strongly tightened bound for exchange
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
685
689
(
2015
).
466.
Sun
,
J.
,
Remsing
,
R. C.
,
Zhang
,
Y.
,
Sun
,
Z.
,
Ruzsinszky
,
A.
,
Peng
,
H.
,
Yang
,
Z.
,
Paul
,
A.
,
Waghmare
,
U.
,
Wu
,
X.
,
Klein
,
M. L.
, and
Perdew
,
J. P.
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
836
(
2016
).
467.
Sutherland
,
B.
, “
Quantum many-body problem in one dimension: Ground state
,”
J. Math. Phys.
12
,
246
250
(
1971
).
468.
Sutherland
,
B.
, “
Quantum many-body problem in one dimension: Thermodynamics
,”
J. Math. Phys.
12
,
251
256
(
1971
).
469.
Sutherland
,
B.
,
Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems
(
World Scientific Press
,
2004
).
470.
Tao
,
T.
, “
A direct proof of the stationarity of the Dyson sine process under Dyson Brownian motion
” (
2012
), available at https://terrytao.wordpress.com/2012/11/11/a-direct-proof-of-the-stationarity-of-the-dyson-sine-process-under-dyson-brownian-motion.
471.
Tao
,
T.
,
Compactness and Contradiction
(
American Mathematical Society
,
Providence, RI
,
2013
), pp.
xii+256
.
472.
Tao
,
T.
and
Vu
,
V.
, “
Random matrices: Universality of local eigenvalue statistics
,”
Acta Math.
206
,
127
204
(
2011
).
473.
Téllez
,
G.
and
Forrester
,
P. J.
, “
Exact finite-size study of the 2D OCP at Γ = 4 and Γ = 6
,”
J. Stat. Phys.
97
,
489
521
(
1999
).
474.
Téllez
,
G.
and
Forrester
,
P. J.
, “
Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma
,”
J. Stat. Phys.
148
,
824
855
(
2012
).