Bogoliubov theory {N. N. Bogoliubov, Izv. Akad. Nauk Ser. Fiz. 11, 77 (1947) [J. Phys. (USSR) 11, 23 (1947) (in English)]} provides important predictions for the low energy properties of the weakly interacting Bose gas. Recently, Bogoliubov’s predictions were justified rigorously by Boccato et al. [Acta Math. 222(2), 219–335 (2019)] for translation invariant systems in the Gross–Pitaveskii regime, where N bosons in Λ=[0;1]3R3 interact through a potential whose scattering length is of size N−1. In this article, we review recent results from the work of Brennecke et al. [Ann. Henri Poincaré 23, 1583–1658 (2022)], a joint work with Schlein and Schraven, which extends the analysis for translation invariant systems to systems of bosons in R3 that are trapped by an external potential.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose-Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
2.
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose-Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
(
22
),
3969
3973
(
1995
).
3.
N. N.
Bogoliubov
, “
On the theory of superfluidity
,”
J. Phys. USSR
11
,
23
(
1947
).
4.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
(
2
),
505
537
(
2006
).
5.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,”
Phys. Rev. A
61
,
043602
(
2000
).
6.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross-Pitaevskii limit revisited
,”
Anal. PDE
9
(
2
),
459
485
(
2016
).
7.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
8.
C.
Brennecke
,
B.
Schlein
, and
S.
Schraven
, “
Bose–Einstein condensation with optimal rate for trapped bosons in the Gross–Pitaevskii regime
,”
Math. Phys. Anal. Geom.
25
,
12
(
2022
).
9.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Complete Bose–Einstein condensation in the Gross–Pitaevskii regime
,”
Commun. Math. Phys.
359
(
3
),
975
1026
(
2018
).
10.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime
,”
Commun. Math. Phys.
376
,
1311
1395
(
2020
).
11.
P. T.
Nam
,
M.
Napiórkowski
,
J.
Ricaud
, and
A.
Triay
, “
Optimal rate of condensation for trapped bosons in the Gross-Pitaevskii regime
,” arXiv:2001.04364.
12.
B.
Brietzke
,
S.
Fournais
, and
J. P.
Solovej
, “
A simple 2nd order lower bound to the energy of dilute Bose gases
,”
Commun. Math. Phys.
376
,
323
351
(
2020
).
13.
C.
Hainzl
, “
Another proof of BEC in the GP-limit
,”
J. Math. Phys.
62
,
051901
(
2021
).
14.
P. T.
Nam
and
A.
Triay
, “
Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime
,” arXiv:2106.11949.
15.
A.
Adhikari
,
C.
Brennecke
, and
B.
Schlein
, “
Bose–Einstein condensation beyond the Gross–Pitaevskii regime
,”
Ann. Henri Poincaré
22
,
1163
1233
(
2021
).
16.
D.
Dimonte
and
E. L.
Giacomelli
, “
On Bose-Einstein condensates in the Thomas-Fermi regime
,” arXiv:2112.02343.
17.
18.
C.
Brennecke
,
B.
Schlein
, and
S.
Schraven
, “
Bogoliubov theory for trapped bosons in the Gross–Pitaevskii regime
,”
Ann. Henri Poincaré
23
,
1583
1658
(
2022
).
19.
P.
Grech
and
R.
Seiringer
, “
The excitation spectrum for weakly interacting bosons in a trap
,”
Commun. Math. Phys.
322
(
2
),
559
591
(
2013
).
20.
J.
Dereziński
and
M.
Napiórkowski
, “
Excitation spectrum of interacting bosons in the mean-field infinite-volume limit
,”
Ann. Henri Poincaré
15
,
2409
2439
(
2014
).
21.
M.
Lewin
,
P. T.
Nam
,
S.
Serfaty
, and
J. P.
Solovej
, “
Bogoliubov spectrum of interacting Bose gases
,”
Commun. Pure Appl. Math.
68
(
3
),
413
471
(
2014
).
22.
R.
Seiringer
, “
The excitation spectrum for weakly interacting bosons
,”
Commun. Math. Phys.
306
,
565
578
(
2011
).
23.
L.
Boßmann
,
S.
Petrat
, and
R.
Seiringer
, “
Asymptotic expansion of low-energy excitations for weakly interacting bosons
,”
Forum Math., Sigma
9
,
e28
(
2021
).
24.
A.
Pizzo
, “
Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime
,” arXiv:1511.07026.
25.
N.
Rougerie
, “
Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger
,”
EMS Surv. Math. Sci.
7
(
2
),
253
408
(
2020
).
26.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross–Pitaevskii limit
,”
Acta Math.
222
(
2
),
219
335
(
2019
).
27.
K.
Huang
and
C. N.
Yang
, “
Quantum-mechanical many-body problem with hard-sphere interaction
,”
Phys. Rev.
105
(
3
),
767
775
(
1957
).
28.
T. D.
Lee
,
K.
Huang
, and
C. N.
Yang
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
(
6
),
1135
1145
(
1957
).
29.
T. D.
Lee
and
C. N.
Yang
, “
Many-body problem in quantum mechanics and quantum statistical mechanics
,”
Phys. Rev.
105
,
1119
1120
(
1957
).
30.
G.
Basti
,
S.
Cenatiempo
, and
B.
Schlein
, “
A new second-order upper bound for the ground state energy of dilute Bose gases
,”
Forum Math., Sigma
9
,
e74
(
2021
).
31.
H.-T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground state energy of a Bose gas
,”
J. Stat. Phys.
136
(
3
),
453
503
(
2009
).
32.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases
,”
Ann. Math.
192
(
3
),
893
976
(
2020
).
33.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.
34.
N.
Benedikter
,
G.
de Oliveira
, and
B.
Schlein
, “
Quantitative derivation of the Gross-Pitaevskii equation
,”
Commun. Pure Appl. Math.
68
(
8
),
1399
1482
(
2014
).
35.
C.
Brennecke
and
B.
Schlein
, “
Gross–Pitaevskii dynamics for Bose–Einstein condensates
,”
Anal. PDE
12
(
6
),
1513
1596
(
2019
).
36.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
The Bogoliubov free energy functional I: Existence of minimizers and phase diagrams
,”
Arch. Ration. Mech. Anal.
229
,
1037
1090
(
2018
).
37.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
The Bogoliubov free energy functional II: The dilute limit
,”
Commun. Math. Phys.
360
,
347
403
(
2018
).
38.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
The excitation spectrum of Bose gases interacting through singular potentials
,”
J. Eur. Math. Soc.
22
(
7
),
2331
(
2020
).
39.
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Ground-state energy of a low-density Bose gas: A second order upper bound
,”
Phys. Rev. A
78
,
053627
(
2008
).
You do not currently have access to this content.