Using precise random matrix theory tools and the Kac–Rice formula, we provide sharp O(1) asymptotics for the average number of deep minima of the (p, k) spiked tensor model. These sharp estimates allow us to prove that, when the signal-to-noise ratio is large enough, the expected number of deep minima is asymptotically finite as N tends to infinity and to establish the occurrence of topological trivialization by showing that this number vanishes when the strength of the signal-to-noise ratio diverges. We also derive an explicit formula for the value of the absolute minimum (the limiting ground state energy) on the N-dimensional sphere, similar to the recent work of Jagannath, Lopatto, and Miolane [Ann. Appl. Probab. 4, 1910–1933 (2020)].
REFERENCES
1.
Adler
, R. J.
and Taylor
, J. E.
, Random Fields and Geometry
, Springer Monographs in Mathematics (Springer-Verlag
, New York
, 2007
).2.
Auffinger
, A.
and Ben Arous
, G.
, “Complexity of random smooth functions on the high-dimensional sphere
,” Ann. Probab.
41
(6
), 4214
–4247
(2013
).3.
Auffinger
, A.
, Ben Arous
, G.
, and Černý
, J.
, “Random matrices and complexity of spin glasses
,” Commun. Pure Appl. Math.
66
(2
), 165
–201
(2013
).4.
Azaïs
, J.-M.
and Wschebor
, M.
, Level Sets and Extrema of Random Processes and Fields
(John Wiley & Sons, Inc.
, Hoboken, NJ
, 2009
).5.
Belius
, D.
, Černý
, J.
, Nakajima
, S.
, and Schmidt
, M.
, “Triviality of the geometry of mixed p-spin spherical Hamiltonians with external field
,” J. Stat. Phys.
186
, 12
(2021
).6.
Ben Arous
, G.
and Guionnet
, A.
, “Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy
,” Probab. Theory Relat. Fields
108
(4
), 517
–542
(1997
).7.
Ben Arous
, G.
, Mei
, S.
, Montanari
, A.
, and Nica
, M.
, “The landscape of the spiked tensor model
,” Commun. Pure Appl. Math.
72
(11
), 2282
–2330
(2019
).8.
Benaych-Georges
, F.
, Guionnet
, A.
, and Maida
, M.
, “Large deviations of the extreme eigenvalues of random deformations of matrices
,” Probab. Theory Relat. Fields
154
(3
), 703
–751
(2012
).9.
Cavagna
, A.
, Garrahan
, J. P.
, and Giardina
, I.
, “Quenched complexity of the mean-field p-spin spherical model with external magnetic field
,” J. Phys. A: Math. Gen.
32
(5
), 711
–723
(1999
).10.
Cavagna
, A.
, Giardina
, I.
, and Parisi
, G.
, “Stationary points of the Thouless-Anderson-Palmer free energy
,” Phys. Rev. B
57
, 11251
–11257
(1998
).11.
Chen
, W.-K.
, “Phase transition in the spiked random tensor with Rademacher prior
,” Ann. Stat.
47
(5
), 2734
–2756
(2019
).12.
Chen
, W.-K.
and Sen
, A.
, “Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed p-spin models
,” Commun. Math. Phys.
350
, 129
(2015
).13.
Desrosiers
, P.
and Liu
, D.-Z.
, “Scaling limits of correlations of characteristic polynomials for the Gaussian β-ensemble with external source
,” Int. Math. Res. Not.
12
, 3751
–3781
(2015
).14.
Fyodorov
, Y. V.
, “High-dimensional random fields and random matrix theory
,” Markov Processes Relat. Fields
21
, 483
–518
(2013
).15.
Fyodorov
, Y. V.
, “Topology trivialization transition in random non-gradient autonomous ODEs on a sphere
,” J. Stat. Mech.: Theory Exp.
2016
(12
), 124003
.16.
Fyodorov
, Y. V.
and Le Doussal
, P.
, “Topology trivialization and large deviations for the minimum in the simplest random optimization
,” J. Stat. Phys.
154
(1
), 466
–490
(2014
).17.
Gillin
, P.
and Sherrington
, D.
, “p > 2 spin glasses with first-order ferromagnetic transitions
,” J. Phys. A: Math. Gen.
33
(16
), 3081
–3091
(2000
).18.
Jagannath
, A.
, Lopatto
, P.
, and Miolane
, L.
, “Statistical thresholds for tensor PCA
,” Ann. Appl. Probab.
30
(4
), 1910
–1933
(2020
).19.
Jagannath
, A.
and Tobasco
, I.
, “Low temperature asymptotics of spherical mean field spin glasses
,” Commun. Math. Phys.
352
(3
), 979
–1017
(2017
).20.
Maillard
, A.
, Ben Arous
, G.
, and Biroli
, G.
, “Landscape complexity for the empirical risk of generalized linear models
,” in Proceedings of the First Mathematical and Scientific Machine Learning Conference, Proceedings of Machine Learning Research (PMLR)
, edited by Lu
, J.
and Ward
, R.
(Princeton University
, Princeton, NJ
, 2020
), Vol. 107, pp. 287
–327
.21.
Mannelli
, S. S.
, Krzakala
, F.
, Urbani
, P.
, and Zdeborová
, L.
, “Passed and spurious: Descent algorithms and local minima in spiked matrix-tensor models
,” in PMLR
, edited by Chaudhuri
, K.
and Salakhutdinov
, R.
(Proceedings of Machine Learning Research
, 2019), Vol. 97, pp. 4333
–4342
.22.
Montanari
, A.
and Richard
, E.
, “A statistical model for tensor PCA
,” in Proceedings of the 27th International Conference on Neural Information Processing Systems
(online
, 2014
), Vol. 2, pp. 2897
–2905
.23.
Perry
, A.
, Wein
, A. S.
, and Bandeira
, A. S.
, “Statistical limits of spiked tensor models
,” Ann. Inst. Henri Poincare: Probab. Stat.
56
(1
), 230
–264
(2020
).24.
Ros
, V.
, Ben Arous
, G.
, Biroli
, G.
, and Cammarota
, C.
, “Complex energy landscapes in spiked-tensor and simple glassy models: Ruggedness, arrangements of local minima, and phase transitions
,” Phys. Rev. X
9
, 011003
(2019
).25.
Sarao Mannelli
, S.
, Biroli
, G.
, Cammarota
, C.
, Krzakala
, F.
, Urbani
, P.
, and Zdeborová
, L.
, “Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
,” Phys. Rev. X
10
, 011057
(2020
).26.
Sarao Mannelli
, S.
, Biroli
, G.
, Cammarota
, C.
, Krzakala
, F.
, and Zdeborová
, L.
, “Who is afraid of big bad minima? Analysis of gradient-flow in spiked matrix-tensor models
,” in Advances in Neural Information Processing Systems
(Curran Associates, Inc.
, 2019
), Vol. 32, pp. 8679
–8689
.© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.