The purpose of this paper is to face up the statistical mechanics of dense spin glasses using the well-known Ising case as a prelude for testing the methodologies we develop and then focusing on the Gaussian case as the main subject of our investigation. We tackle the problem of solving for the quenched statistical pressures of these models both at the replica symmetric level and under the first step of replica symmetry breaking by relying upon two techniques: the former is an adaptation of the celebrated Guerra’s interpolation (closer to probability theory in its spirit) and the latter is an adaptation of the transport partial differential equation (closer to mathematical physics in spirit). We recover, in both assumptions, the same expression for quenched statistical pressure and self-consistency equation found with other techniques, including the well-known replica trick technique.

1.
M.
Mézard
,
G.
Parisi
, and
M. A.
Virasoro
,
Spin Glass Theory and Beyond: An Introduction to the Replica Method and its Applications
(
World Scientific Publishing Company
,
1987
), Vol. 9.
2.
E.
Bolthausen
and
A.
Bovier
,
Spin Glasses
(
Springer
,
2007
).
3.
D. J.
Amit
and
D. J.
Amit
,
Modeling Brain Function: The World of Attractor Neural Networks
(
Cambridge University Press
,
1989
).
4.
E.
Agliari
,
F.
Alemanno
,
A.
Barra
,
M.
Centonze
, and
A.
Fachechi
, “
Neural networks with a redundant representation: Detecting the undetectable
,”
Phys. Rev. Lett.
124
,
028301
(
2020
).
5.
F. E.
Leonelli
,
E.
Agliari
,
L.
Albanese
, and
A.
Barra
, “
On the effective initialisation for restricted Boltzmann machines via duality with Hopfield model
,”
Neural Networks
143
,
314
326
(
2021
).
6.
A.
Bovier
and
P.
Picco
,
Mathematical Aspects of Spin Glasses and Neural Networks
(
Springer Science & Business Media
,
2012
), Vol. 41.
7.
D.
Panchenko
, “
A connection between the Ghirlanda–Guerra identities and ultrametricity
,”
Ann. Probab.
38
,
327
347
(
2010
).
8.
S.
Ghirlanda
and
F.
Guerra
, “
General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity
,”
J. Phys. A: Math. Gen.
31
,
9149
(
1998
).
9.
M.
Talagrand
, “
Multiple levels of symmetry breaking
,”
Probab. Theory Relat. Fields
117
,
449
466
(
2000
).
10.
R.
Monasson
and
R.
Zecchina
, “
Weight space structure and internal representations: A direct approach to learning and generalization in multilayer neural networks
,”
Phys. Rev. Lett.
75
,
2432
(
1995
).
11.
R.
Monasson
and
D.
O’Kane
, “
Domains of solutions and replica symmetry breaking in multilayer neural networks
,”
Europhys. Lett.
27
,
85
(
1994
).
12.
C.
Baldassi
,
F.
Pittorino
, and
R.
Zecchina
, “
Shaping the learning landscape in neural networks around wide flat minima
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
161
170
(
2020
).
13.
M.
Talagrand
 et al.,
Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models
(
Springer Science & Business Media
,
2003
), Vol. 46.
14.
F.
Guerra
, “
Sum rules for the free energy in the mean field spin glass model
,”
Fields Inst. Commun.
30
,
161
(
2001
).
15.
F.
Guerra
, “
Broken replica symmetry bounds in the mean field spin glass model
,”
Commun. Math. Phys.
233
,
1
12
(
2003
).
16.
E.
Agliari
,
F.
Alemanno
,
A.
Barra
, and
A.
Fachechi
, “
Generalized Guerra’s interpolation schemes for dense associative neural networks
,”
Neural Networks
128
,
254
267
(
2020
).
17.
E.
Agliari
,
L.
Albanese
,
A.
Barra
, and
G.
Ottaviani
, “
Replica symmetry breaking in neural networks: A few steps toward rigorous results
,”
J. Phys. A: Math. Theor.
53
,
415005
(
2020
).
18.
E.
Agliari
,
L.
Albanese
,
F.
Alemanno
, and
A.
Fachechi
, “
A transport equation approach for deep neural networks with quenched random weights
,”
J. Phys. A: Math. Theor.
54
,
505004
(
2021
).
19.
A.
Barra
,
G.
Genovese
,
F.
Guerra
, and
D.
Tantari
, “
About a solvable mean field model of a Gaussian spin glass
,”
J. Phys. A: Math. Theor.
47
,
155002
(
2014
).
20.
A.
Barra
,
G.
Genovese
,
F.
Guerra
, and
D.
Tantari
, “
How glassy are neural networks?
,”
J. Stat. Mech.: Theory Exp.
2012
,
P07009
.
21.
A.
Crisanti
and
H.-J.
Sommers
, “
The spherical p-spin interaction spin glass model: The statics
,”
Z. Phys. B: Condens. Matter
87
,
341
354
(
1992
).
22.
E.
Gardner
, “
Spin glasses with p-spin interactions
,”
Nucl. Phys. B
257
,
747
765
(
1985
).
23.
M.
Talagrand
, “
Free energy of the spherical mean field model
,”
Probab. Theory Relat. Fields
134
,
339
(
2006
).
24.
G.
Genovese
and
D.
Tantari
, “
Legendre duality of spherical and Gaussian spin glasses
,”
Math. Phys., Anal. Geom.
18
,
10
(
2015
).
25.
G.
Genovese
and
D.
Tantari
, “
Legendre equivalences of spherical Boltzmann machines
,”
J. Phys. A: Math. Theor.
53
,
094001
(
2020
).
26.
D. J.
Gross
and
M.
Mézard
, “
The simplest spin glass
,”
Nucl. Phys. B
240
,
431
452
(
1984
).
27.
B.
Derrida
, “
Random-energy model: An exactly solvable model of disordered systems
,”
Phys. Rev. B
24
,
2613
(
1981
).
28.
M.
Talagrand
, “
On the p-spin interaction model at low temperature
,”
C. R. Acad. Sci., Ser. I: Math.
331
,
939
942
(
2000
).
29.
M.
Talagrand
, “
Rigorous low-temperature results for the mean field p-spins interaction model
,”
Probab. Theory Relat. Fields
117
,
303
360
(
2000
).
30.
F.
Guerra
and
F. L.
Toninelli
, “
The thermodynamic limit in mean field spin glass models
,”
Commun. Math. Phys.
230
,
71
79
(
2002
).
31.
A. C.
Coolen
,
R.
Kühn
, and
P.
Sollich
,
Theory of Neural Information Processing Systems
(
OUP
,
Oxford
,
2005
).
32.
A.
Fachechi
, “
PDE/statistical mechanics duality: Relation between Guerra’s interpolated p-spin ferromagnets and the Burgers hierarchy
,”
J. Stat. Phys.
183
,
12
(
2021
).
33.
E.
Agliari
,
A.
Barra
,
R.
Burioni
, and
A.
Di Biasio
, “
Notes on the p-spin glass studied via Hamilton-Jacobi and smooth-cavity techniques
,”
J. Math. Phys.
53
,
063304
(
2012
).
34.
G.
Genovese
and
A.
Barra
, “
A mechanical approach to mean field spin models
,”
J. Math. Phys.
50
,
053303
(
2009
).
35.
A.
Barra
,
A. D.
Biasio
, and
F.
Guerra
, “
Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique
,”
J. Stat. Mech.: Theory Exp.
2010
,
P09006
.
36.
G. B.
Arous
,
A.
Dembo
, and
A.
Guionnet
, “
Aging of spherical spin glasses
,”
Probab. Theory Relat. Fields
120
,
1
67
(
2001
).
37.
A.
Bovier
and
A.
Klimovsky
, “
The Aizenman-Sims-Starr and Guerras schemes for the SK model with multidimensional spins
,”
Electron. J. Probab.
14
,
161
241
(
2009
).
38.
J. M.
Kosterlitz
,
D. J.
Thouless
, and
R. C.
Jones
, “
Spherical model of a spin-glass
,”
Phys. Rev. Lett.
36
,
1217
(
1976
).
39.
D.
Panchenko
and
M.
Talagrand
, “
On the overlap in the multiple spherical SK models
,”
Ann. Probab.
35
,
2321
2355
(
2007
).
40.
T. H.
Berlin
and
M.
Kac
, “
The spherical model of a ferromagnet
,”
Phys. Rev.
86
,
821
(
1952
).
41.
L.
Albanese
,
F.
Alemanno
,
A.
Alessandrelli
, and
A.
Barra
, “
Replica symmetry breaking in dense neural networks
,” arXiv:2111.12997 (
2021
).
You do not currently have access to this content.