For minimum-error channel discrimination tasks that involve only unitary channels, we show that sequential strategies may outperform the parallel ones. Additionally, we show that general strategies that involve indefinite causal order are also advantageous for this task. However, for the task of discriminating a uniformly distributed set of unitary channels that forms a group, we show that parallel strategies are, indeed, optimal, even when compared to general strategies. We also show that strategies based on the quantum switch cannot outperform sequential strategies in the discrimination of unitary channels. Finally, we derive an absolute upper bound for the maximal probability of successfully discriminating any set of unitary channels with any number of copies for the most general strategies that are suitable for channel discrimination. Our bound is tight since it is saturated by sets of unitary channels forming a group k-design.

1.
R.
Blahut
, “
Hypothesis testing and information theory
,”
IEEE Trans. Inf. Theory
20
,
405
417
(
1974
).
2.
S. L. K.
Pond
,
S. D. W.
Frost
, and
S. V.
Muse
, “
HyPhy: Hypothesis testing using phylogenies
,”
Bioinformatics
21
,
676
679
(
2004
).
3.
J.
Pearl
,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(
Elsevier
,
2014
).
4.
R. S.
Nickerson
, “
Null hypothesis significance testing: A review of an old and continuing controversy
,”
Psychol. Methods
5
,
241
(
2000
).
5.
A.
Shimbo
,
A.
Soeda
, and
M.
Murao
, “
Equivalence determination of unitary operations
,” arXiv:1803.11414 [quant-ph] (
2018
).
6.
A.
Soeda
,
A.
Shimbo
, and
M.
Murao
, “
Optimal quantum discrimination of single-qubit unitary gates between two candidates
,”
Phys. Rev. A
104
,
022422
(
2021
); arXiv:2103.08208 [quant-ph].
7.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum metrology
,”
Phys. Rev. Lett.
96
,
010401
(
2006
); arXiv:quant-ph/0509179 [quant-ph].
8.
L.
Pezzè
,
A.
Smerzi
,
M. K.
Oberthaler
,
R.
Schmied
, and
P.
Treutlein
, “
Quantum metrology with nonclassical states of atomic ensembles
,”
Rev. Mod. Phys.
90
,
035005
(
2018
); arXiv:1609.01609 [quant-ph].
9.
M.
Hayashi
, “
Quantum hypothesis testing and discrimination of quantum states
,” in
Quantum Information
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
69
91
.
10.
M. G. A.
Paris
, “
Quantum estimation for quantum technology
,”
Int. J. Quantum Inf.
7
,
125
137
(
2009
); arXiv:0804.2981 [quant-ph].
11.
G.
Chiribella
,
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, “
Efficient use of quantum resources for the transmission of a reference frame
,”
Phys. Rev. Lett.
93
,
180503
(
2004
); arXiv:quant-ph/0405095.
12.
S. D.
Bartlett
,
T.
Rudolph
, and
R. W.
Spekkens
, “
Reference frames, superselection rules, and quantum information
,”
Rev. Mod. Phys.
79
,
555
609
(
2007
); arXiv:quant-ph/0610030.
13.
G.
Chiribella
,
G. M.
D’Ariano
, and
P.
Perinotti
, “
Quantum circuit architecture
,”
Phys. Rev. Lett.
101
,
060401
(
2008
); arXiv:0712.1325 [quant-ph].
14.
D.
Deutsch
and
R.
Jozsa
, “
Rapid solution of problems by quantum computation
,”
Proc. R. Soc. London, Ser. A
439
,
553
558
(
1992
).
15.
L. K.
Grover
, “
A framework for fast quantum mechanical algorithms
,” in
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing
(
Association for Computing Machinery
,
New York, NY
,
1998
), pp.
53
62
; arXiv:quant-ph/9711043.
16.
D. R.
Simon
, “
On the power of quantum computation
,” in
Proceedings of the 35th Annual Symposium on Foundations of Computer Science
(
IEEE
,
1994
), pp.
116
123
.
17.
A.
Chefles
,
A.
Kitagawa
,
M.
Takeoka
,
M.
Sasaki
, and
J.
Twamley
, “
Unambiguous discrimination among oracle operators
,”
J. Phys. A: Math. Gen.
40
,
10183
10213
(
2007
); arXiv:quant-ph/0702245.
18.
C. W.
Helstrom
, “
Quantum detection and estimation theory
,”
J. Stat. Phys.
1
,
231
252
(
1969
).
19.
A.
Acín
, “
Statistical distinguishability between unitary operations
,”
Phys. Rev. Lett.
87
,
177901
(
2001
); arXiv:quant-ph/0102064.
20.
G. M.
D’Ariano
,
P.
Lo Presti
, and
M. G. A.
Paris
, “
Using entanglement improves the precision of quantum measurements
,”
Phys. Rev. Lett.
87
,
270404
(
2001
); arXiv:quant-ph/0109040.
21.
R.
Duan
,
Y.
Feng
, and
M.
Ying
, “
Entanglement is not necessary for perfect discrimination between unitary operations
,”
Phys. Rev. Lett.
98
,
100503
(
2007
); arXiv:quant-ph/0601150.
22.
G.
Chiribella
,
G. M.
D’Ariano
, and
P.
Perinotti
, “
Memory effects in quantum channel discrimination
,”
Phys. Rev. Lett.
101
,
180501
(
2008
); arXiv:0803.3237 [quant-ph].
23.
G.
Chiribella
,
G. M.
D’Ariano
, and
M.
Roetteler
, “
Identification of a reversible quantum gate: Assessing the resources
,”
New J. Phys.
15
,
103019
(
2013
); arXiv:1306.0719 [quant-ph].
24.
A.
Bisio
,
G.
Chiribella
,
G. M.
D’Ariano
,
S.
Facchini
, and
P.
Perinotti
, “
Optimal quantum learning of a unitary transformation
,”
Phys. Rev. A
81
,
032324
(
2010
); arXiv:0903.0543 [quant-ph].
25.
M.
Sedlák
,
A.
Bisio
, and
M.
Ziman
, “
Optimal probabilistic storage and retrieval of unitary channels
,”
Phys. Rev. Lett.
122
,
170502
(
2019
); arXiv:1809.04552 [quant-ph].
26.
J.
Bavaresco
,
M.
Murao
, and
M. T.
Quintino
, “
Strict hierarchy between parallel, sequential, and indefinite-causal-order strategies for channel discrimination
,”
Phys. Rev. Lett.
127
,
200504
(
2021
); arXiv:2011.08300 [quant-ph].
27.
G.
Chiribella
,
G. M.
D’Ariano
,
P.
Perinotti
, and
B.
Valiron
, “
Quantum computations without definite causal structure
,”
Phys. Rev. A
88
,
022318
(
2013
); arXiv:0912.0195 [quant-ph].
28.
M.
Araújo
,
F.
Costa
, and
Č.
Brukner
, “
Computational advantage from quantum-controlled ordering of gates
,”
Phys. Rev. Lett.
113
,
250402
(
2014
); arXiv:1401.8127 [quant-ph].
29.
W.
Yokojima
,
M. T.
Quintino
,
A.
Soeda
, and
M.
Murao
, “
Consequences of preserving reversibility in quantum superchannels
,”
Quantum
5
,
441
(
2021
); arXiv:2003.05682 [quant-ph].
30.
J.
Barrett
,
R.
Lorenz
, and
O.
Oreshkov
, “
Cyclic quantum causal models
,”
Nat. Commun.
12
,
885
(
2021
); arXiv:2002.12157 [quant-ph].
31.
G.
Chiribella
,
G. M.
D’Ariano
, and
P.
Perinotti
, “
Theoretical framework for quantum networks
,”
Phys. Rev. A
80
,
022339
(
2009
); arXiv:0904.4483 [quant-ph].
32.
M.
Ziman
, “
Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments
,”
Phys. Rev. A
77
,
062112
(
2008
); arXiv:0802.3862 [quant-ph].
33.
M.
Ziman
and
M.
Sedlák
, “
Single-shot discrimination of quantum unitary processes
,”
J. Mod. Opt.
57
,
253
259
(
2010
); arXiv:1003.1488 [quant-ph].
34.
M.
Araújo
,
C.
Branciard
,
F.
Costa
,
A.
Feix
,
C.
Giarmatzi
, and
Č.
Brukner
, “
Witnessing causal nonseparability
,”
New J. Phys.
17
,
102001
(
2015
); arXiv:1506.03776 [quant-ph].
35.
G.
Gutoski
and
J.
Watrous
, “
Toward a general theory of quantum games
,” in
STOC’07: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing
(
Association for Computing Machinery
,
New York, NY
,
2007
), pp.
565
574
; arXiv:quant-ph/0611234.
36.
D.
Kretschmann
and
R. F.
Werner
, “
Quantum channels with memory
,”
Phys. Rev. A
72
,
062323
(
2005
); arXiv:quant-ph/0502106.
37.
O.
Oreshkov
,
F.
Costa
, and
Č.
Brukner
, “
Quantum correlations with no causal order
,”
Nat. Commun.
3
,
1092
(
2012
); arXiv:1105.4464 [quant-ph].
38.
J.
Wechs
,
A. A.
Abbott
, and
C.
Branciard
, “
On the definition and characterisation of multipartite causal (non)separability
,”
New J. Phys.
21
,
013027
(
2019
); arXiv:1807.10557 [quant-ph].
39.
A.
Feix
,
M.
Araújo
, and
Č.
Brukner
, “
Quantum superposition of the order of parties as a communication resource
,”
Phys. Rev. A
92
,
052326
(
2015
); arXiv:1508.07840 [quant-ph].
40.
P. A.
Guérin
,
A.
Feix
,
M.
Araújo
, and
Č.
Brukner
, “
Exponential communication complexity advantage from quantum superposition of the direction of communication
,”
Phys. Rev. Lett.
117
,
100502
(
2016
); arXiv:1605.07372 [quant-ph].
41.
G.
Chiribella
, “
Perfect discrimination of no-signalling channels via quantum superposition of causal structures
,”
Phys. Rev. A
86
,
040301(R)
(
2012
); arXiv:1109.5154 [quant-ph].
42.
C.
Branciard
,
M.
Araújo
,
A.
Feix
,
F.
Costa
, and
Č.
Brukner
, “
The simplest causal inequalities and their violation
,”
New J. Phys.
18
,
013008
(
2016
); arXiv:1508.01704 [quant-ph].
43.
J.
Bavaresco
,
M.
Araújo
,
Č.
Brukner
, and
M. T.
Quintino
, “
Semi-device-independent certification of indefinite causal order
,”
Quantum
3
,
176
(
2019
); arXiv:1903.10526 [quant-ph].
44.
M. T.
Quintino
,
Q.
Dong
,
A.
Shimbo
,
A.
Soeda
, and
M.
Murao
, “
Reversing unknown quantum transformations: Universal quantum circuit for inverting general unitary operations
,”
Phys. Rev. Lett.
123
,
210502
(
2019
); arXiv:1810.06944 [quant-ph].
45.
J.
Wechs
,
H.
Dourdent
,
A. A.
Abbott
, and
C.
Branciard
, “
Quantum circuits with classical versus quantum control of causal order
,”
PRX Quantum
2
,
030335
(
2021
); arXiv:2101.08796 [quant-ph].
46.
G.
Chiribella
,
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, “
Covariant quantum measurements that maximize the likelihood
,”
Phys. Rev. A
70
,
062105
(
2004
); arXiv:quant-ph/0403083.
47.
A.
Hayashi
,
T.
Hashimoto
, and
M.
Horibe
, “
Extended quantum color coding
,”
Phys. Rev. A
71
,
012326
(
2005
); arXiv:quant-ph/0409173.
48.
G.
Chiribella
,
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, “
Maximum likelihood estimation for a group of physical transformations
,”
Int. J. Quantum Inf.
4
,
453
472
(
2006
); arXiv:quant-ph/0507007.
49.
A. W.
Harrow
,
A.
Hassidim
,
D. W.
Leung
, and
J.
Watrous
, “
Adaptive versus nonadaptive strategies for quantum channel discrimination
,”
Phys. Rev. A
81
,
032339
(
2010
); arXiv:0909.0256 [quant-ph].
50.
Ä.
Baumeler
and
S.
Wolf
, “
The space of logically consistent classical processes without causal order
,”
New J. Phys.
18
,
013036
(
2016
); arXiv:1507.01714 [quant-ph].
51.
M.
Araújo
,
A.
Feix
,
M.
Navascués
, and
Č.
Brukner
, “
A purification postulate for quantum mechanics with indefinite causal order
,”
Quantum
1
,
10
(
2017
); arXiv:1611.08535 [quant-ph].
52.
M.
Túlio Quintino
and
J.
Bavaresco
,
Code to accompany: “Unitary channel discrimination beyond group structures: Advantages of sequential and indefinite-causal-order-strategies
” (
2021
). https://github.com/mtcq/unitary_channel_discrimination.
53.
M. T.
Quintino
,
Q.
Dong
,
A.
Shimbo
,
A.
Soeda
, and
M.
Murao
, “
Probabilistic exact universal quantum circuits for transforming unitary operations
,”
Phys. Rev. A
100
,
062339
(
2019
); arXiv:1909.01366 [quant-ph].
54.
A.
Bisio
,
G. M.
D’Ariano
,
P.
Perinotti
, and
M.
Sedlák
, “
Optimal processing of reversible quantum channels
,”
Phys. Lett. A
378
,
1797
1808
(
2014
); arXiv:1308.3254 [quant-ph].
55.

Here, W1 stands for the inverse of W on its range. If the operator W is not not full rank, the composition W W−1 ≕ ΠW is not the identity 1 but the projector onto the subspace spanned by the range of W. Due to this technicality, when the operator W is not full rank, we should define the measurements as MUIO:=W1IOTUIOW1IO+1N(1WW1). With that, the proof written here also applies to the case where the operator W is not full rank.

56.

Indeed, two diagonalisable operators A and B commute if and only if they are diagonal in the same basis. Now, if Aiαi|i〉〈i|, its positive semidefinite square root is also diagonal in the same basis, in particular, A=iαi|ii|. Hence, if A commutes with B, A also commutes with B.

57.

Interestingly, it can be proved that for the k = 2-slot case, the action of the standard quantum switch superchannel, i.e., Vπn=1, on unitary channels uniquely defines its action on general operations.61 The possibility of extending this result for general switch-like superchannels is still open, but the existence of general switch-like superchannels is ensured by the construction presented via Eq. (E12).

58.
T.
Hashimoto
,
A.
Hayashi
,
M.
Hayashi
, and
M.
Horibe
, “
Unitary-process discrimination with error margin
,”
Phys. Rev. A
81
,
062327
(
2010
); arXiv:0912.2610 [quant-ph].
59.
J.
von Korff
and
J.
Kempe
, “
Quantum advantage in transmitting a permutation
,”
Phys. Rev. Lett.
93
,
260502
(
2004
).
60.
I.
Schur
, “
Ueber eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen
,” Ph.D. thesis,
Friedrich-Wilhelms-Universität zu Berlin
,
1901
.
61.
Q.
Dong
,
M. T.
Quintino
,
A.
Soeda
, and
M.
Murao
, “
The quantum switch is uniquely defined by its action on unitary operations
,” arXiv:2106.00034 [quant-ph] (
2021
).
You do not currently have access to this content.