We review Kitaev’s celebrated “periodic table” for topological phases of condensed matter, which identifies ground states (Fermi projections) of gapped periodic quantum systems up to continuous deformations. We study families of projections that depend on a periodic crystal momentum and respect the symmetries that characterize the various classes of topological insulators. Our aim is to classify such families in a systematic, explicit, and constructive way: we identify numerical indices for all symmetry classes and provide algorithms to deform families of projections whose indices agree. Aiming at simplicity, we illustrate the method for zero- and one-dimensional systems and recover the (weak and strong) topological invariants proposed by Kitaev and others.

1.
Altland
,
A.
and
Zirnbauer
,
M. R.
, “
Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
,”
Phys. Rev. B
55
,
1142
1161
(
1997
).
2.
Autonne
,
L.
,
Sur les Matrices Hypohermitiennes et sur les Matrices Unitaires
(
A. Rey
,
1915
), Vol. 38.
3.
Bott
,
R.
, “
An application of the Morse theory to the topology of Lie-groups
,”
Bull. Soc. Math. Fr.
79
,
251
281
(
1956
).
4.
Bourne
,
C.
,
Carey
,
A. L.
, and
Rennie
,
A.
, “
A non-commutative framework for topological insulators
,”
Rev. Math. Phys.
28
(
02
),
1650004
(
2016
).
5.
Cartan
,
E.
, “
Sur une classe remarquable d’espaces de Riemann. I
,”
Bull. Soc. Math. Fr.
54
,
214
264
(
1926
).
6.
Cartan
,
E.
, “
Sur une classe remarquable d’espaces de Riemann. II
,”
Bull. Soc. Math. Fr.
55
,
114
134
(
1927
).
7.
Cornean
,
H. D.
,
Monaco
,
D.
, and
Teufel
,
S.
, “
Wannier functions and Z2 invariants in time-reversal symmetric topological insulators
,”
Rev. Math. Phys.
29
(
02
),
1730001
(
2017
).
8.
de la Cruz
,
R. J.
and
Fassbender
,
H.
, “
On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation
,”
Linear Algebra Appl.
496
,
288
306
(
2016
).
9.
De Nittis
,
G.
and
Gomi
,
K.
, “
Classification of ‘real’ Bloch-bundles: Topological quantum systems of type AI
,”
J. Geom. Phys.
86
,
303
338
(
2014
).
10.
De Nittis
,
G.
and
Gomi
,
K.
, “
Chiral vector bundles
,”
Math. Z.
290
,
775
830
(
2015
).
11.
De Nittis
,
G.
and
Gomi
,
K.
, “
Classification of ‘quaternionic’ Bloch-bundles: Topological quantum systems of type AII
,”
Commun. Math. Phys.
339
,
1
55
(
2015
).
12.
De Nittis
,
G.
and
Gomi
,
K.
, “
The cohomology invariant for class DIII topological insulators
,” arXiv:2104.00603 (
2021
).
13.
Fiorenza
,
D.
,
Monaco
,
D.
, and
Panati
,
G.
, “
Construction of real-valued localized composite Wannier functions for insulators
,”
Ann. Henri Poincaré
17
,
63
97
(
2016
).
14.
Fiorenza
,
D.
,
Monaco
,
D.
, and
Panati
,
G.
, “Z2
invariants of topological insulators as geometric obstructions
,”
Commun. Math. Phys.
343
,
1115
1157
(
2016
).
15.
Gontier
,
D.
,
Levitt
,
A.
, and
Siraj-Dine
,
S.
, “
Numerical construction of Wannier functions through homotopy
,”
J. Math. Phys.
60
,
031901
(
2019
).
16.
Graf
,
G. M.
and
Porta
,
M.
, “
Bulk-edge correspondence for two-dimensional topological insulators
,”
Commun. Math. Phys.
324
(
3
),
851
895
(
2013
).
17.
Grossmann
,
J.
and
Schulz-Baldes
,
H.
, “
Index pairings in presence of symmetries with applications to topological insulators
,”
Commun. Math. Phys.
343
(
2
),
477
513
(
2015
).
18.
Hall
,
B.
,
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
(
Springer
,
2015
), Vol. 222.
19.
Heinzner
,
P.
,
Huckleberry
,
A.
, and
Zirnbauer
,
M. R.
, “
Symmetry classes of disordered fermions
,”
Commun. Math. Phys.
257
,
725
771
(
2005
).
20.
Horn
,
R. A.
and
Johnson
,
C. R.
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
2013
).
21.
Hua
,
L.-K.
, “
On the theory of automorphic functions of a matrix variable I—Geometrical basis
,”
Am. J. Math.
66
,
470
488
(
1944
).
22.
Husemöller
,
D.
,
Fibre Bundles
, 3rd ed., Graduate Texts in Mathematics Vol. 20 (
Springer-Verlag
,
New York
,
1994
).
23.
Ikramov
,
K. D.
and
Fassbender
,
H.
, “
Several observations on symplectic, Hamiltonian, and skew-Hamiltonian matrices
,”
Linear Algebra Appl.
400
,
15
29
(
2005
).
24.
Kennedy
,
R.
and
Guggenheim
,
C.
, “
Homotopy theory of strong and weak topological insulators
,”
Phys. Rev. B
91
,
245148
(
2015
).
25.
Kennedy
,
R.
and
Zirnbauer
,
M. R.
, “
Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems
,”
Commun. Math. Phys.
342
,
909
963
(
2016
).
26.
Kitaev
,
A. Y.
, “
Unpaired Majorana fermions in quantum wires
,”
Phys.-Usp.
44
,
131
(
2001
).
27.
Kitaev
,
A. Y.
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
30
(
2009
).
28.
Kuchment
,
P.
, “
An overview of periodic elliptic operators
,”
Bull. Am. Math. Soc.
53
,
343
414
(
2016
).
29.
Monaco
,
D.
and
Tauber
,
C.
, “
Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess–Zumino, and Fu–Kane–Mele
,”
Lett. Math. Phys.
107
(
7
),
1315
1343
(
2017
).
30.
Panati
,
G.
, “
Triviality of Bloch and Bloch–Dirac bundles
,”
Ann. Henri Poincaré
8
(
5
),
995
1011
(
2007
).
31.
Prodan
,
E.
and
Schulz-Baldes
,
H.
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
, Mathematical Physics Studies (
Springer
,
Cham
,
2016
).
32.
Ryu
,
S.
,
Schnyder
,
A. P.
,
Furusaki
,
A.
, and
Ludwig
,
A. W. W.
, “
Topological insulators and superconductors: Tenfold way and dimensional hierarchy
,”
New J. Phys.
12
(
6
),
065010
(
2010
).
33.
Teo
,
J. C. Y.
and
Kane
,
C. L.
, “
Topological defects and gapless modes in insulators and superconductors
,”
Phys. Rev. B
82
(
11
),
115120
(
2010
).
34.
Thiang
,
G. C.
, “
On the K-theoretic classification of topological phases of matter
,”
Ann. Henri Poincaré
17
(
4
),
757
794
(
2015
).
You do not currently have access to this content.