In this paper, we consider the three-dimensional inviscid Boussinesq system for the micropolar fluid in porous media. We proved the global well-posedness and large time behavior of solutions in the whole space R3. Precisely, when the H3-norm of initial data is small, but the higher-order derivatives can be arbitrarily large, the system is globally well-posed by the pure energy method. Moreover, by a set of mature negative Sobolev and Besov space interpolation methods, the LpL2 (1 ≤ p ≤ 2) type of the optimal time decay rates are obtained without any smallness assumption on the Lp norm of the initial data. Our results mathematically explain the stability of the system in an unbounded domain.

1.
A.
Eringen
, “
Theory of micropolar fluids
,”
J. Math. Mech.
16
,
1
18
(
1966
).
2.
G.
Łukaszewicz
,
Micropolar Fluids-Theory and Applications
(
Birkhäuser
,
Basel
,
1999
).
3.
G.
Łukaszewicz
, “
Long time behavior of 2D micropolar fluid flows
,”
Math. Comput. Modell.
34
,
487
509
(
2001
).
4.
A. J.
Majda
,
Compressible Fluid Flow and Conservation Laws in Several Space Variables
(
Springer-Verlag
,
Berlin, New York
,
1984
).
5.
D.
Chae
, “
Global regularity for the 2D Boussinesq equations with partial viscous terms
,”
Adv. Math.
203
,
497
513
(
2006
).
6.
T. Y.
Hou
and
C.
Li
, “
Global well-posedness of the viscous Boussinesq equations
,”
Discrete Contin. Dyn. Syst. A
12
,
1
12
(
2005
).
7.
H.
Abidi
and
T.
Hmidi
, “
On the global well-posedness for Boussinesq system
,”
J. Differ. Equations
233
,
199
220
(
2007
).
8.
C.
Cao
and
J.
Wu
, “
Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation
,”
Arch. Ration. Mech. Anal.
208
(
3
),
985
1004
(
2013
).
9.
C.
Chen
and
J.
Liu
, “
Global well-posedness of 2D nonlinear Boussinesq equations with mixed partial viscosity and thermal diffusivity
,”
Math. Methods Appl. Sci.
40
(
12
),
4412
4424
(
2017
).
10.
R.
Danchin
and
M.
Paicu
, “
Global existence results for the anisotropic Boussinesq system in dimension two
,”
Math. Models Methods Appl. Sci.
21
(
3
),
421
457
(
2011
).
11.
T.
Hmidi
and
S.
Keraani
, “
On the global well-posedness of the Boussinesq system with zero viscosity
,”
Indiana Univ. Math. J.
58
,
1591
1618
(
2009
).
12.
M.-J.
Lai
,
R.
Pan
, and
K.
Zhao
, “
Initial boundary value problem for two-dimensional viscous Boussinesq equations
,”
Arch. Ration. Mech. Anal.
199
,
739
760
(
2011
).
13.
G.
Wu
and
X.
Zheng
, “
Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation
,”
J. Differ. Equations
255
,
2891
2926
(
2013
).
14.
C.
Wang
and
Z.
Zhang
, “
Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity
,”
Adv. Math.
228
,
43
62
(
2011
).
15.
R.
Danchin
and
M.
Paicu
, “
The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity
,”
Bull. Soc. Math. Fr.
136
,
261
309
(
2008
).
16.
L.
Brandolese
and
M. E.
Schonbek
, “
Large time decay and growth for solutions of a viscous Boussinesq system
,”
Trans. Am. Math. Soc.
364
,
5057
5090
(
2012
).
17.
D.
Fang
,
W.
Le
, and
T.
Zhang
, “
Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl
,”
Nonlinear Anal.
166
,
48
86
(
2018
).
18.
T.
Hmidi
and
F.
Rousset
, “
Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data
,”
Ann. Inst. Henri Poincare
27
,
1227
1246
(
2010
).
19.
T.
Hmidi
and
F.
Rousset
, “
Global well-posedness for the Euler-Boussinesq system with axisymmetric data
,”
J. Funct. Anal.
260
,
745
796
(
2011
).
20.
C.
Miao
and
X.
Zheng
, “
On the global well-posedness for the Boussinesq system with horizontal dissipation
,”
Commun. Math. Phys.
321
,
33
67
(
2013
).
21.
C.
Miao
and
X.
Zheng
, “
Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity
,”
J. Math. Pures Appl.
101
,
842
872
(
2014
).
22.
S.
Sokrani
, “
On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data
,”
Discrete Contin. Dyn. Syst.
39
,
1613
1650
(
2019
).
23.
C.
Foias
,
O.
Manley
, and
R.
Temam
, “
Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension
,”
Nonlinear Anal.
11
(
8
),
939
967
(
1987
).
24.
A.
Tarasinska
, “
Global attractor for heat convection problem in a micropolar fluid
,”
Math. Methods Appl. Sci.
29
,
1215
1236
(
2006
).
25.
F.
Xu
and
M.
Chi
, “
Global regularity for the 2D micropolar Rayleigh-Bénard convection system with the zero diffusivity
,”
Appl. Math. Lett.
108
,
106508
(
2020
).
26.
F.
Xu
,
L.
Qiao
, and
M.
Zhang
, “
On the well-posedness for the 2D micropolar Rayleigh-Bénard convection problem
,”
Z. Angew. Math. Phys.
72
,
17
(
2021
).
27.
S.
Wang
, “
Global well-posedness for the 2D micropolar Rayleigh-Bénard convection problem without velocity dissipation
,”
Acta Math. Sin.
37
(
7
),
1053
1065
(
2021
).
28.
P.
Kalita
,
J. A.
Langa
, and
G.
Łukaszewicz
, “
Micropolar meets Newtonian. The Rayleigh-Bénard problem
,”
Physica D
392
,
57
80
(
2019
).
29.
P.
Kalita
and
G.
Łukaszewicz
, “
Micropolar meets Newtonian in 3D. The Rayleigh-Bénard problem for large Prandtl numbers
,”
Nonlinearity
33
(
11
),
5686
5732
(
2020
).
30.
X.
Li
and
Z.
Tan
, “
Global well-posedness for the 3D damped micropolar Bénard system with zero thermal conductivity
,”
Appl. Math. Lett.
117
,
107103
(
2021
).
31.
S.
Ibrahim
and
T.
Yoneda
, “
Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data
,”
J. Math. Sci. Univ. Tokyo
20
,
1
25
(
2013
).
32.
A. J.
Majda
,
Introduction to PDEs and Waves for the Atmosphere and Ocean
, Courant Lecture Notes Vol. 9 (
American Mathematical Society and Courant Institute of Mathematical Sciences
,
2002
).
33.
Y.
Guo
, “
The Vlasov-Poisson-Landau system in a periodic box
,”
J. Am. Math. Soc.
25
,
759
812
(
2012
).
34.
Y.
Wang
, “
Decay of the Navier–Stokes–Poisson equations
,”
J. Differ. Equations
253
,
273
297
(
2012
).
35.
Z.
Tan
,
Y.
Wang
, and
Y.
Wang
, “
Decay estimates of solutions to the compressible Euler-Maxwell system in R3
,”
J. Differ. Equations
257
,
2846
2873
(
2014
).
36.
Z.
Tan
and
Y.
Wang
, “
Global solution and large-time behavior of the 3D compressible Euler equations with damping
,”
J. Differ. Equations
254
,
1686
1704
(
2013
).
37.
Z.
Tan
,
W.
Wu
, and
J.
Zhou
, “
Global existence and decay estimate of solutions to magneto-micropolar fluid equations
,”
J. Differ. Equations
266
,
4137
4169
(
2019
).
38.
Z.
Tan
and
J.
Zhou
, “
Decay estimate of solutions to the coupled chemotaxis-fluid equations in R3
,”
Nonlinear Anal.: Real World Appl.
43
,
323
347
(
2018
).
39.
Y.
Guo
and
Y.
Wang
, “
Decay of dissipative equations and negative Sobolev spaces
,”
Commun. Partial Differ. Equations
37
,
2165
2208
(
2012
).
40.
V.
Sohinger
and
R. M.
Strain
, “
The Boltzmann equation, Besov spaces, and optimal time decay rates in Rxn
,”
Adv. Math.
261
,
274
332
(
2014
).
41.
A. J.
Majda
and
A. L.
Bertozzi
,
Vorticity and Incompressible Flow
(
Cambridge University Press
,
Cambridge
,
2002
).
42.
E. M.
Stein
,
Singular Integrals and Differentiability Properties of Functions
(
Princeton University Press
,
1970
).
43.
A.
Matsumura
and
T.
Nishida
, “
The initial value problem for the equations of motion of viscous and heat-conductive gases
,”
J. Math. Kyoto Univ.
20
,
67
104
(
1980
).
You do not currently have access to this content.