As a continuation of our previous work, we consider lower regularity global well-posedness for a model of the two-dimensional zero diffusivity Boussinesq equations with variable viscosity. More precisely, based on De Giorgi–Nash–Moser estimates and the refined logarithmic Gronwall-type inequality, we prove that it is globally well-posed, provided that the initial data belong to Hs with s > 1. Finally, we show that it is also valid for the two-dimensional zero diffusivity Boussinesq equations with variable viscosity in the non-divergence form.

1.
C.
Wang
and
Z.
Zhang
, “
Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity
,”
Adv. Math.
228
,
43
62
(
2011
).
2.
S.
Lorca
and
J.
Boldrini
, “
The initial value problem for a generalized Boussinesq model: Regularity and global existence of strong solutions
,”
Mat. Contemp.
11
,
71
94
(
1996
).
3.
S. A.
Lorca
and
J. L.
Boldrini
, “
The initial value problem for a generalized Boussinesq model
,”
Nonlinear Anal.
36
,
457
480
(
1999
).
4.
D.
Turcotte
and
G.
Schubert
,
Geodynamics Applications of Continuum Physics to Geological Problems
(
John Wiley & Sons
,
1982
).
5.
M.
Gaedtke
,
S.
Abishek
,
R.
Mead-Hunter
,
A. J. C.
King
,
B. J.
Mullins
,
H.
Nirschl
, and
M. J.
Krause
, “
Total enthalpy-based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials
,”
Int. J. Heat Mass Transfer
155
,
119870
(
2020
).
6.
H.
Abidi
and
P.
Zhang
, “
On the global well-posedness of 2-D Boussinesq system with variable viscosity
,”
Adv. Math.
305
,
1202
1249
(
2017
).
7.
Q.
Chen
and
L.
Jiang
, “
Global well-posedness for the 2-D Boussinesq system with temperature-dependent thermal diffusivity
,”
Colloq. Math.
135
,
187
199
(
2014
).
8.
B.
Dong
,
Z.
Ye
, and
X.
Zhai
, “
Global regularity for the 2D Boussinesq equations with temperature-dependent viscosity
,”
J. Math. Fluid Mech.
22
(
1
),
2
(
2020
).
9.
A.
Huang
, “
The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity
,”
Nonlinear Anal.
113
,
401
429
(
2015
).
10.
Q.
Jiu
and
J.
Liu
, “
Global-wellposedness of 2D Boussinesq equations with mixed partial temperature-dependent viscosity and thermal diffusivity
,”
Nonlinear Anal.
132
,
227
239
(
2016
).
11.
D.
Li
and
X.
Xu
, “
Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity
,”
Dyn. PDE
10
,
255
265
(
2013
).
12.
H.
Li
,
R.
Pan
, and
W.
Zhang
, “
Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion
,”
J. Hyperbolic Differ. Equations
12
,
469
488
(
2015
).
13.
Y.
Sun
and
Z.
Zhang
, “
Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity
,”
J. Differ. Equations
255
,
1069
1085
(
2013
).
14.
Z.
Ye
, “
Global well-posedness for a model of 2D temperature-dependent Boussinesq equations without diffusivity
,”
J. Differ. Equations
271
,
107
127
(
2021
).
15.
A.
Majda
and
A.
Bertozzi
,
Vorticity and Incompressible Flow
(
Cambridge University Press
,
Cambridge
,
2001
).
16.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
New York
,
1987
).
17.
D.
Chae
, “
Global regularity for the 2D Boussinesq equations with partial viscosity terms
,”
Adv. Math.
203
,
497
513
(
2006
).
18.
T. Y.
Hou
and
C.
Li
, “
Global well-posedness of the viscous Boussinesq equations
,”
Discrete Contin. Dyn. Syst.
12
,
1
12
(
2005
).
19.
H.
Abidi
and
T.
Hmidi
, “
On the global well-posedness for Boussinesq system
,”
J. Differ. Equations
233
,
199
220
(
2007
).
20.
R.
Danchin
and
X.
Zhang
, “
Global persistence of geometrical structures for the Boussinesq equation with no diffusion
,”
Commun. Partial Differ. Equations
42
,
68
99
(
2017
).
21.
F.
Gancedo
and
E.
Garcia-Juarez
, “
Global regularity for 2D Boussinesq temperature patches with no diffusion
,”
Ann. PDE
3
(
2
),
14
(
2017
).
22.
T.
Hmidi
and
S.
Keraani
, “
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity
,”
Adv. Differ. Equations
12
,
461
480
(
2007
).
23.
M.
He
, “
On the blowup criteria and global regularity for the non-diffusive Boussinesq equations with temperature-dependent viscosity coefficient
,”
Nonlinear Anal.
144
,
93
109
(
2016
).
24.
L.
Caffarelli
and
A.
Vasseur
, “
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equations
,”
Ann. Math.
171
(
3
),
1903
1930
(
2010
).
25.
J. T.
Beale
,
T.
Kato
, and
A.
Majda
, “
Remarks on the breakdown of smooth solutions for the 3-D Euler equations
,”
Commun. Math. Phys.
94
(
1
),
61
66
(
1984
).
26.
T.
Kato
and
G.
Ponce
, “
Commutator estimates and the Euler and Navier-Stokes equations
,”
Commun. Pure Appl. Math.
41
,
891
907
(
1988
).
27.
H.
Bahouri
,
J.-Y.
Chemin
, and
R.
Danchin
,
Fourier Analysis and Nonlinear Partial Differential Equations
, Grundlehren der Mathematischen Wissenschaften Vol. 343 (
Springer
(
2011
).
28.
H.
Triebel
,
Theory of Function Spaces
, Monographs in Mathematics (
Birkhäuser Verlag
,
Basel, Boston
,
1983
).
29.
Z.
Ye
, “
Some new regularity criteria for the 2D Euler-Boussinesq equations via the temperature
,”
Acta Appl. Math.
157
,
141
169
(
2018
).
You do not currently have access to this content.