We apply the conformal method to solve the initial-value formulation of general relativity to the λ-R model, a minimal, anisotropic modification of general relativity with a preferred foliation and two local degrees of freedom. We obtain a modified Lichnerowicz–York equation for the conformal factor of the metric and derive its properties. We show that the behavior of the equation depends on the value of the coupling constant λ. In the absence of a cosmological constant, we recover the existence and uniqueness properties of the original equation when λ > 1/3 and the trace of the momentum of the metric, π, is non-vanishing. For π = 0, we recover the original Lichnerowicz equation regardless of the value of λ and must therefore restrict the metric to the positive Yamabe class. The same restriction holds for λ < 1/3, a case in which we show that if the norm of the transverse-traceless data is small enough, then there are two solutions. Taking the equations of motion into account, this allows us to prove that there is, in general, no way of matching both constraint-solving data and time evolution of phase-space variables between the λ-R model and general relativity, thereby proving the non-equivalence between the theories outside of the previously known cases λ = 1 and π = 0 and of the limiting case of λ, with a finite π, which we show to yield geometries corresponding to those of general relativity in the maximal slicing gauge.

1.
C. M.
Will
, “
The confrontation between general relativity and experiment
,”
Living Rev. Relativ.
17
,
4
(
2014
); arXiv:1403.7377v1 [gr-qc].
2.
T. P.
Sotiriou
and
V.
Faraoni
, “
f(R) theories of gravity
,”
Rev. Mod. Phys.
82
,
451
497
(
2010
); arXiv:0805.1726v4 [gr-qc].
3.
J.
Bellorín
and
A.
Restuccia
, “
On the consistency of the Hořava theory
,”
Int. J. Mod. Phys. D
21
,
1250029
(
2012
); arXiv:1004.0055v3 [hep-th].
4.
W.
Donnelly
and
T.
Jacobson
, “
Hamiltonian structure of Hořava gravity
,”
Phys. Rev. D
84
,
104019
(
2011
); arXiv:1106.2131v3 [hep-th].
5.
R.
Loll
and
L.
Pires
, “
Role of the extra coupling in the kinetic term in Hořava-Lifshitz gravity
,”
Phys. Rev. D
90
,
124050
(
2014
); arXiv:1407.1259v1.
6.
R.
Loll
and
L.
Pires
, “
Spherically symmetric solutions of the λ–R model
,”
Phys. Rev. D
96
,
044030
(
2017
).
7.
P.
Hořava
, “
Quantum gravity at a Lifshitz point
,”
Phys. Rev. D
79
,
084008
(
2009
); arXiv:0901.3775v2 [hep-th].
8.
T. P.
Sotiriou
, “
Hořava-Lifshitz gravity: A status report
,”
J. Phys.: Conf. Ser.
283
,
012034
(
2011
); arXiv:1010.3218v2 [hep-th].
9.
A.
Wang
, “
Hořava gravity at a Lifshitz point: A progress report
,”
Int. J. Mod. Phys. D
26
,
1730014
(
2017
); arXiv:1701.06087v3 [gr-qc].
10.
P. A. M.
Dirac
,
Lectures on Quantum Mechanics
(
Dover Publications
,
New York
,
2001
).
11.
K.
Sundermeyer
,
Constrained Dynamics
, Lecture Notes in Physics Vol. 169 (
Springer
,
Berlin
,
1982
).
12.
M.
Henneaux
and
C.
Teitelboim
,
Quantization of Gauge Systems
(
Princeton University Press
,
1992
).
13.
D.
Giulini
, “
Dynamical and Hamiltonian formulation of general relativity
,” in
Springer Handbook of Spacetime
, edited by
A.
Ashtekar
and
V.
Petkov
(
Springer Verlag
,
2014
), Chap. 17, arXiv:1505.01403 [gr-qc].
14.
N.
Ó Murchadha
and
J. W.
York
, “
Initial-value problem of general relativity. I. General formulation and physical interpretation
,”
Phys. Rev. D
10
,
428
436
(
1974
).
15.
N.
Ó Murchadha
and
J. W.
York
, “
Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds
,”
J. Math. Phys.
14
,
1551
1557
(
1973
).
16.
Y.
Choquet-Bruhat
, “
Beginnings of the Cauchy problem
,” arXiv:1410.3490v1 [gr-qc].
17.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
The dynamics of general relativity
,” in
Gravitation: An Introduction to Current Research
, edited by
L.
Witten
(
Wiley
,
1962
), arXiv:gr-qc/0405109v1.
18.
E.
Gourgoulhon
, “
3+1 formalism and bases of numerical relativity
,” in
Lecture Notes in Physics
(
Springer, Berlin
,
2012
) Vol. 846.
19.
B. S.
DeWitt
, “
Quantum theory of gravity. I. The canonical theory
,”
Phys. Rev.
160
,
1113
1148
(
1967
).
20.
N.
Ó Murchadha
, “
Readings of the Lichnerowicz-York equation
,”
Acta Phys. Pol., B
36
,
109
120
(
2005
); arXiv:gr-qc/0502055v1.
21.
A.
Lichnerowicz
, “
L’intégration des équations de la gravitation relativiste et le problème des n corps
,”
J. Math. Pures Appl.
23
,
37
(
1944
).
22.
J. W.
York
, “
Gravitational degrees of freedom and the initial-value problem
,”
Phys. Rev. Lett.
26
,
1656
1658
(
1971
).
23.
J. W.
York
, “
Role of conformal three-geometry in the dynamics of gravitation
,”
Phys. Rev. Lett.
28
,
1082
1085
(
1972
).
24.
J. W.
York
, “
Mapping onto solutions of the gravitational initial value problem
,”
J. Math. Phys.
13
,
125
130
(
1972
).
25.
D.
Maxwell
, “
Rough solutions of the Einstein constraint equations on compact manifolds
,”
J. Hyperbolic Differ. Equations
2
,
521
546
(
2005
); arXiv:gr-qc/0506085.
26.
B.
Premoselli
, “
Effective multiplicity for the Einstein-scalar field Lichnerowicz equation
,”
Calculus Var. Partial Differ. Equations
53
,
29
64
(
2013
); arXiv:1307.2416 [math.AP].
27.
P.
Chruściel
and
R.
Gicquaud
, “
Bifurcating solutions of the Lichnerowicz equation
,”
Ann. Henri Poincaré
18
,
643
(
2017
).
28.
T. W.
Baumgarte
,
N.
Ó Murchadha
, and
H. P.
Pfeiffer
, “
Einstein constraints: Uniqueness and nonuniqueness in the conformal thin sandwich approach
,”
Phys. Rev. D
75
,
044009
(
2007
); arXiv:gr-qc/0610120.
29.
E.
Hebey
,
F.
Pacard
, and
D.
Pollack
, “
A variational analysis of Einstein–scalar field Lichnerowicz equations on compact Riemannian manifolds
,”
Commun. Math. Phys.
278
,
117
132
(
2009
); arXiv:gr-qc/0702031.
30.
Q. A.
Ngô
and
X.
Xu
, “
Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds
,”
Adv. Math.
230
,
2378
2415
(
2012
).
31.
Y.
Choquet-Bruhat
,
J.
Isenberg
, and
D.
Pollack
, “
Applications of theorems of Jean Leray to the Einstein-scalar field equations
,”
J. Fixed Point Theory Appl.
1
,
31
46
(
2007
); arXiv:gr-qc/0611009.
32.
Y.
Choquet-Bruhat
,
J.
Isenberg
, and
D.
Pollack
, “
The constraint equations for the Einstein-scalar field system on compact manifolds
,”
Classical Quantum Gravity
24
,
809
(
2007
); arXiv:gr-qc/0610045v2.
33.
H.
Yamabe
, “
On a deformation of Riemannian structures on compact manifolds
,”
Osaka Math. J.
12
,
21
(
1960
).
34.
R.
Schoen
, “
Conformal deformation of a Riemannian metric to constant scalar curvature
,”
J. Differ. Geom.
20
,
479
(
1984
).
35.

In what follows, we will have coordinates xi on the hypersurfaces Σt and use tR to denote the time coordinate.

36.

This is only true for λ ≠ 1/3, as the same condition is a primary constraint of the model in that case.

37.

The formulation is named after its authors: Richard Arnowitt, Stanley Deser, and Charles Misner.

38.

The equations of motion for the lapse N and the shift Ni.

39.

A metric Gijkl is said to be ultralocal if it does not depend on spatial derivatives of the (inverse) metric gij.

40.

In Ref. 5, we imposed ȧ=0 for simplicity. We are not performing the same simplification in the current paper.

41.

The set of restrictions associated with the “almost always” was discussed in Subsection I B and holds in the present case.

42.

Recall that in Sec. II, we discussed some cases for which there are two solutions.

43.

Recall that, unlike in general relativity, it is not possible to cast all spherically symmetric spacetimes as spacetimes with spherically symmetric spatial hypersurfaces when the symmetry group is that of foliation-preserving diffeomorphisms.

You do not currently have access to this content.