We study the well-posedness and longtime dynamics of the β-evolution equation with fractional damping: t2u+(Δ)βu+γ(1Δ)αtu+f(u)=g(x) on the whole space Rn, with β > 2α > 0. First, we find a critical exponent p*=n+4αn2β for the well-posedness of energy solutions. In fact, if the nonlinear term grows with the order p ∈ [1, p*) and satisfies some dissipative conditions, then the equation is globally well-posed in the energy space. Moreover, both u and tu have a smoothing effect as a parabolic equation. Finally, we show that the solution semigroup has a global attractor A in the energy space. The main difficulties come from the non-compactness of the Sobolev embedding on Rn and the nonlocal characteristic of the equation. We overcome them by establishing some new commutator estimates.

1.
J. M.
Ball
, “
Global attractors for damped semilinear wave equations
,”
Discrete Contin. Dyn. Syst.
10
,
31
52
(
2004
).
2.
R.
Temam
,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
(
Springer-Verlag
,
New York
,
1997
).
3.
E.
Feireisl
, “
Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent
,”
Proc. R. Soc. Edinburgh, Sect. A
125
,
1051
1062
(
1995
).
4.
V.
Kalantarov
,
A.
Savostianov
, and
S.
Zelik
, “
Attractors for damped quintic wave equations in bounded domains
,”
Ann. Henri Poincare
17
,
2555
2584
(
2016
).
5.
L.
Kapitanski
, “
Minimal compact global attractor for a damped semilinear wave equation
,”
Commun. Partial Differ. Equations
20
,
1303
1323
(
1995
).
6.
V.
Belleri
and
V.
Pata
, “
Attractors for semilinear strongly damped wave equations on R3
,”
Discrete Contin. Dyn. Syst.
7
,
719
735
(
2001
).
7.
V.
Pata
and
M.
Squassina
, “
On the strongly damped wave equation
,”
Commun. Math. Phys.
253
,
511
533
(
2005
).
8.
V.
Pata
and
S.
Zelik
, “
A remark on the damped wave equation
,”
Commun. Pure Appl. Anal.
5
,
611
616
(
2006
).
9.
V.
Pata
and
S.
Zelik
, “
Smooth attractors for strongly damped wave equations
,”
Nonlinearity
19
,
1495
1506
(
2006
).
10.
M.
Yang
and
C.
Sun
, “
Dynamics of strongly damped wave equations in locally uniform spaces: Attractors and asymptotic regularity
,”
Trans. Am. Math. Soc.
361
(
2
),
1069
1101
(
2009
).
11.
M.
Yang
and
C.
Sun
, “
Exponential attractors for the strongly damped wave equations
,”
Nonlinear Anal.: Real World Appl.
11
,
913
919
(
2010
).
12.
S.
Chen
and
R.
Triggiani
, “
Gevrey class semigroups arising from elastic systems with gentle dissipation: The case 0 < α < 1/2
,”
Proc. Am. Math. Soc.
110
,
401
415
(
1990
).
13.
M.
Ghisi
,
M.
Gobbino
, and
A.
Haraux
, “
Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation
,”
Trans. Am. Math. Soc.
368
(
3
),
2039
2079
(
2016
).
14.
A. N.
Carvalho
and
J. W.
Cholewa
, “
Attractors for strongly damped wave equations with critical nonlinearities
,”
Pacific J. Math.
207
,
287
310
(
2002
).
15.
A. N.
Carvalho
and
J. W.
Cholewa
, “
Local well-posedness for strongly damped wave equations with critical nonlinearities
,”
Bull. Aust. Math. Soc.
66
,
443
463
(
2002
).
16.
A. N.
Carvalho
and
J. W.
Cholewa
, “
Regularity of solutions on the global attractor for a semilinear damped wave equation
,”
J. Math. Anal. Appl.
337
,
932
948
(
2008
).
17.
A. N.
Carvalho
,
J. W.
Cholewa
, and
T.
Dlotko
, “
Strongly damped wave problems: Bootstrapping and regularity of solutions
,”
J. Differ. Equations
244
,
2310
2333
(
2008
).
18.
A.
Savostianov
, “
Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains
,”
Adv. Differ. Equations
20
(
5–6
),
495
530
(
2015
).
19.
A.
Savostianov
, “
Strichartz estimates and smooth attractors of dissipative hyperbolic equations
,” Ph.D. dissertation (
University of Surrey
,
2015
).
20.
Z. J.
Yang
,
Z. M.
Liu
, and
P. P.
Niu
, “
Exponential attractor for the wave equation with structural damping and supercritical exponent
,”
Commun. Contemp. Math.
18
,
155055
(
2016
).
21.
Z.
Yang
and
Z.
Liu
, “
Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation
,”
Appl. Math. Lett.
69
,
22
28
(
2017
).
22.
Z.
Yang
and
Z.
Liu
, “
Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation
,”
J. Differ. Equations
264
,
3976
4005
(
2018
).
23.
Z. J.
Yang
,
Z. M.
Liu
, and
N.
Feng
, “
Longtime behavior of the semilinear wave equation with gentle dissipation
,”
Discrete Contin. Dyn. Syst.
36
,
6557
6580
(
2016
).
24.
W.
Chen
,
M.
D’Abbicco
, and
G.
Girardi
, “
Global small data solutions for semilinear waves with two dissipative terms
,”
Ann. Mat.
(published online
2021
).
25.
M. A.
Jorge Silva
and
V.
Narciso
, “
Attractors and their properties for a class of nonlocal extensible beams
,”
Discrete Contin. Dyn. Syst.
35
,
985
1008
(
2015
).
26.
A. K.
Khanmamedov
, “
Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain
,”
J. Differ. Equations
225
(
2
),
528
548
(
2006
).
27.
Y.
Li
,
Z. J.
Yang
, and
F.
Da
, “
Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping
,”
Discrete Contin. Dyn. Syst.
39
,
5975
6000
(
2019
).
28.
M. C.
Zelati
, “
Global and exponential attractors for the singularly perturbed extensible beam
,”
Discrete Contin. Dyn. Syst.
25
,
1041
1060
(
2009
).
29.
M.
D’Abbicco
, “
L1 − L1 estimates for a doubly dissipative semilinear wave equation
,”
Nonlinear Differ. Equations Appl.
24
(
1
),
5
(
2017
).
30.
M.
D’Abbicco
and
M. R.
Ebert
, “
A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations
,”
Nonlinear Anal.
149
,
1
40
(
2017
).
31.
M.
D’Abbicco
and
M. R.
Ebert
, “
The critical exponent for nonlinear damped σ-evolution equations
,” arXiv:2005.10946 (
2020
).
32.
M.
D’Abbicco
and
G.
Girardi
, “
A structurally damped σ-evolution equation with nonlinear memory
,”
Math. Methods Appl. Sci.
(published online
2020
).
33.
L.
Grafakos
,
Modern Fourier Analysis
, 2nd ed., Graduate Texts in Mathematics Vol. 250 (
Springer
,
New York
,
2009
).
34.
Q. L.
Chen
,
P. Y.
Ding
, and
Z. J.
Yang
, “
Global attractors and their upper semicontinuity for a structural damped wave equation with supercritical nonlinearity on RN
,” arXiv:1905.06778v1 [math.AP] (
2019
).
35.
Y. T.
Guo
and
P. Y.
Ding
, “
Global attractor of the fractional damping wave equation on R3
,”
Appl. Anal.
(published online
2020
).
36.
D.
Li
, “
On Kato–Ponce and fractional Leibniz
,”
Rev. Mat. Iberoam.
35
,
23
100
(
2019
).
37.
B.
Wang
, “
Attractors for reaction-diffusion equations in unbounded domains
,”
Physica D
128
,
41
52
(
1999
).
38.
Y.
Guo
,
M.
Wang
,
Y.
Tang
, “
Higher regularity of global attractors of a weakly dissipative fractional Korteweg de Vries equation
,”
J. Math. Phys.
56
(
12
),
122702
(
2015
).
39.
M.
Wang
, “
Long time dynamics for a damped Benjamin–Bona–Mahony equation in low regularity spaces
,”
Nonlinear Anal.
105
,
134
144
(
2014
).
40.
M.
Wang
and
J.
Huang
, “
Finite dimensionality of the global attractor for a fractional Schrödinger equation on R
,”
Appl. Math. Lett.
98
,
432
437
(
2019
).
41.
M.
Wang
and
Y.
Tang
, “
Long time dynamics of 2D quasi-geostrophic equations with damping in Lp
,”
J. Math. Anal. Appl.
412
(
2
),
866
877
(
2014
).
42.
C. E.
Kenig
,
G.
Ponce
, and
L.
Vega
, “
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle
,”
Commun. Pure Appl. Math.
46
,
527
620
(
1993
).
43.
C. E.
Kenig
,
G.
Ponce
, and
L.
Vega
, “
Well-posedness of the initial value problem for the Korteweg-de Vries equation
,”
J. Am. Math. Soc.
4
(
2
),
323
347
(
1991
).
44.
C.
Caterina
,
O.
Goubet
, and
E.
Zahrouni
, “
Finite-dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation
,”
Math. Methods Appl. Sci.
40
(
15
),
5563
5574
(
2017
).
45.
S.
Sjöstrand
, “
On the Riesz means of the solution of the Schrödinger equation
,”
Ann. Sc. Norm. Super. Pisa
24
,
331
348
(
1970
).
46.
I.
Chueshov
and
I.
Lasiecka
,
Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping
, Memories of AMS Vol. 195 (
American Mathematical Society
,
Providence, RI
,
2008
).
47.
J.
Hale
,
Asymptotic Behavior of Dissipative Systems
(
American Mathematical Society
,
Providence, RI
,
1988
).
48.
C.
Sun
,
M.
Yang
, and
C.
Zhong
, “
Global attractors for the wave equation with nonlinear damping
,”
J. Differ. Equations
227
,
427
443
(
2006
).
You do not currently have access to this content.