In this paper, we obtain the long-time asymptotics of the complex mKdV equation via the Defit–Zhou method (nonlinear steepest descent method). The Cauchy problem of the complex mKdV equation is transformed into the corresponding Riemann–Hilbert problem on the basis of the Lax pair and the scattering matrix. After that, Riemann–Hilbert problems are converted through a decomposition of the matrix-valued spectral function and factorizations of the jump matrix for Riemann–Hilbert problem. Finally, by solving the last model problem, the long-time asymptotics of complex mKdV equation are derived.
REFERENCES
1.
S. K.
El-Labany
, W. M.
Moslem
, E. I.
El-Awady
et al., “Nonlinear dynamics associated with rotating magnetized electron-positron-ion plasmas
,” Phys. Lett. A
375
(2
), 159
–164
(2010
).2.
M.
Alam
, M.
Rahman
, R.
Islam
et al., “Application of the new extended (G′/G)-expansion method to find exact solutions for nonlinear partial differential equation
,” Comput. Methods Differ. Equations
3
(1
), 59
–69
(2015
).3.
Y.
Zhang
, Q.
Liu
, Z.
Qiao
et al., “Fifth-order b-family Novikov (FObFN) model with pseudo-peakons and multi-peakons
,” Mod. Phys. Lett. B
33
(18
), 1950205
(2019
).4.
A.
Chabchoub
, N.
Hoffmann
, M.
Onorato
et al., “Super rogue waves: Observation of a higher-order breather in water waves
,” Phys. Rev. X
2
(1
), 011015
(2012
).5.
A.
Yokus
, H. M.
Baskonus
, T. A.
Sulaiman
et al., “Numerical simulation and solutions of the two-component second order KdV evolutionary system
,” Numer. Methods Partial Differ. Equations
34
(1
), 211
–227
(2018
).6.
C. M.
Khalique
and I. E.
Mhlanga
, “Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation
,” Appl. Math. Nonlinear Sci.
3
(1
), 241
–254
(2018
).7.
Y.
Zhang
, J.
Mei
, X.
Zhang
et al., “Symmetry properties and explicit solutions of some nonlinear differential and fractional equations
,” Appl. Math. Comput.
337
, 408
–418
(2018
).8.
K.
Dysthe
, H. E.
Krogstad
, and P.
Müller
, “Oceanic rogue waves
,” Annu. Rev. Fluid Mech.
40
, 287
–310
(2008
).9.
J.
Chen
, Y.
Chen
, B.
Feng
et al., “Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems
,” Phys. Lett. A
379
(24–25
), 1510
–1519
(2015
).10.
A.
Abdeljabbar
, W.
Ma
, and A.
Yildirim
, “Determinant solutions to a (3 + 1)-dimensional generalized KP equation with variable coefficients
,” Chin. Ann. Math., Ser. B
33
(5
), 641
–650
(2012
).11.
J.-H.
Zhang
, L.
Wang
, and C.
Liu
, “Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects
,” Proc. R. Soc. London, Ser. A
473
(2199
), 20160681
(2017
).12.
X.
Wang
, Y.
Li
, and Y.
Chen
, “Generalized Darboux transformation and localized waves in coupled Hirota equations
,” Wave Motion
51
(7
), 1149
–1160
(2014
).13.
E. K.
Sklyanin
, “Method of the inverse scattering problem and the nonlinear quantum Schrödinger equation
,” Dokl. Akad. Nauk SSSR
244
(6
), 1337
–1341
(1979
); available at http://mi.mathnet.ru/dan42335.14.
M. J.
Ablowitz
, D. J.
Kaup
, A. C.
Newell
, and H.
Segur
, “The inverse scattering transform-Fourier analysis for nonlinear problems
,” Stud. Appl. Math.
53
, 249
–315
(1974
).15.
C. S.
Gardener
, J. M.
Greene
, M. D.
Kruskal
, and R. M.
Miura
, “Method for solving the Korteweg-de Vries equation
,” Phys. Rev. Lett.
19
, 1095
–1097
(1967
).16.
V. E.
Zakharov
and A. B.
Shabat
, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem
,” Funct. Anal. Appl.
8
(3
), 226
–235
(1974
).17.
P.
Deift
and X.
Zhou
, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation
,” Ann. Math.
137
, 295
–368
(1993
).18.
P. A.
Deift
, A. R.
Its
, and X.
Zhou
, “Long-time asymptotics for integrable nonlinear wave equation
,” in Important Developments in Soliton Theory
, Springer Series Nonlinear Dynamics (Springer
, Berlin
, 1993
), pp. 181
–204
.19.
J.
Xu
and E.
Fan
, “Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: Without solitons
,” J. Differ. Equations
259
(3
), 1098
–1148
(2015
).20.
J.
Xu
, E.
Fan
et al., “Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value
,” Math. Phys., Anal. Geom.
16
(3
), 253
–288
(2013
).21.
Q.
Cheng
and E.
Fan
, “Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data
,” J. Math. Anal. Appl.
489
(2
), 124188
(2020
).22.
X.
Geng
, M.
Chen
, and K.
Wang
, “Long-time asymptotics of the coupled modified Korteweg-de Vries equation
,” J. Geom. Phys.
142
, 151
–167
(2019
).23.
X.
Geng
and H.
Liu
, “The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation
,” J. Nonlinear Sci.
28
(2
), 739
–763
(2018
).24.
X.
Geng
, K.
Wang
, and M.
Chen
, “Long-time asymptotics for the spin-1 Gross–Pitaevskii equation
,” Commun. Math. Phys.
382
(1
), 585
–611
(2021
).25.
Y.
Li
, Solitons and Integrable Systems
(Shanghai Science and Technology Education Press
, 1999
).26.
E. T.
Whittaker
and G. N.
Watson
, A Course of Modern Analysis
, 4th ed. (Cambridge University Press
, Cambridge
, 1927
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.