This is an extended version of my 2018 Heineman prize lecture describing the work for which I got the prize. The citation is very broad, so this describes virtually all my work prior to 1995 and some afterward. It discusses work in non-relativistic quantum mechanics, constructive quantum field theory, and statistical mechanics.
REFERENCES
1.
2.
F.
Adiceam
, D.
Damanik
, F.
Gähler
, U.
Grimm
, A.
Haynes
, A.
Julien
, A.
Navas
, L.
Sadun
, and B.
Weiss
, “Open problems and conjectures related to the theory of mathematical quasicrystals
,” Arnold Math. J.
2
, 579
–592
(2016
).3.
S.
Agmon
, “Spectral properties of Schrödinger operators and scattering theory
,” Ann. Sc. Norm. Super. Pisa -Cl. Sci.
2
, 151
–218
(1975
); available at http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/.4.
S.
Agmon
, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations
(Princeton University Press
, Princeton
, 1982
).5.
J.
Aguilar
and J. M.
Combes
, “A class of analytic perturbations for one-body Schrödinger Hamiltonians
,” Commun. Math. Phys.
22
, 269
–279
(1971
).6.
Y.
Aharonov
and J.
Anandan
, “Phase change during a cyclic quantum evolution
,” Phys. Rev. Lett.
58
, 1593
–1596
(1987
).7.
M.
Aizenman
, “Geometric analysis of φ4 fields and Ising models. Parts I and II
,” Commun. Math. Phys.
86
, 1
–48
(1982
).8.
M.
Aizenman
, “Localization at weak disorder: Some elementary bounds
,” Rev. Math. Phys.
6
, 1163
–1182
(1994
).9.
M.
Aizenman
and H.
Duminil-Copin
, “Marginal triviality of the scaling limits of critical 4D Ising and models
,” Ann. Math.
194
, 163
–235
(2021
).10.
M.
Aizenman
and E. H.
Lieb
, “On semi-classical bounds for eigenvalues of Schrödinger operators
,” Phys. Lett. A
66
, 427
–429
(1978
).11.
M.
Aizenman
and S.
Molchanov
, “Localization at large disorder and at extreme energies: An elementary derivation
,” Commun. Math. Phys.
157
, 245
–278
(1993
).12.
M.
Aizenman
and B.
Simon
, “Local Ward identities and the decay of correlations in ferromagnets
,” Commun. Math. Phys.
77
, 137
–143
(1980
).13.
M.
Aizenman
and B.
Simon
, “A comparison of plane rotor Ising models
,” Phys. Lett. A
76
, 281
–282
(1980
).14.
M.
Aizenman
and B.
Simon
, “Brownian motion and Harnack’s inequality for Schrödinger operators
,” Commun. Pure Appl. Math.
35
, 209
–273
(1982
).15.
M.
Aizenman
and S.
Warzel
, Random Operators: Disorder Effects on Quantum Spectra and Dynamics
, Graduate Studies in Mathematics Vol. 168 (American Mathematical Society
, Providence, RI
, 2015
).16.
A.
Alonso
and B.
Simon
, “The Birman-Krein-Vishik theory of self-adjoint extension of semibounded operators
,” J. Oper. Theory
4
, 251
–270
(1980
).17.
W. O.
Amrein
and K. B.
Sinha
, “On pairs of projections in a Hilbert space
,” Linear Algebra Appl.
208–209
, 425
–435
(1994
).18.
P. W.
Anderson
, “Absence of diffusion in certain random lattices
,” Phys. Rev.
109
, 1492
–1505
(1958
).19.
G.
André
and S.
Aubry
, “Analyticity breaking and Anderson localization in incommensurate lattices
,” Ann. Isr. Phys. Soc.
3
, 133
–164
(1980
).20.
N.
Aronszajn
, “On a problem of Weyl in the theory of singular Sturm–Liouville equations
,” Am. J. Math.
79
, 597
–610
(1957
).21.
N.
Aronszajn
and W. F.
Donoghue
, “On exponential representations of analytic functions in the upper half plane with positive imaginary part
,” J. Anal. Math.
5
, 321
–388
(1956
).22.
T.
Asano
, “Generalization of the Lee–Yang theorem
,” Prog. Theor. Phys.
40
, 1328
–1336
(1968
).23.
S.
Aubry
, “The new concept of transition by breaking of analyticity
,” in Solitons and Condensed Matter Physics
, edited by A. R.
Bishop
and T.
Schneider
(Springer
, Berlin
, 1978
), pp. 264
–277
.24.
25.
A.
Avila
and S.
Jitomirskaya
, “The ten martini problem
,” Ann. Math.
170
, 303
–342
(2009
).26.
A.
Avila
, S.
Jitomirskaya
, and C. A.
Marx
, “Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
,” Invent. Math.
210
, 283
–339
(2017
).27.
A.
Avila
, Y.
Last
, and B.
Simon
, “Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum
,” Anal. Partial Differ. Equations
3
, 81
–108
(2010
).28.
A.
Avila
, J.
You
, and Q.
Zhou
, “Sharp phase transitions for the almost Mathieu operator
,” Duke Math. J.
166
, 2697
–2718
(2017
).29.
S.
Avramska-Lukarska
, D.
Hundertmark
, and H.
Kovarik
, “Absence of positive eigenvalues of magnetic Schrödinger operators
,” arXiv:2003.07294 (2020
).30.
J. E.
Avron
, “Bender-Wu formulas for the Zeeman effect in hydrogen
,” Ann. Phys.
131
, 73
–94
(1981
).31.
J. E.
Avron
and I. W.
Herbst
, “Spectral and scattering theory of Schrödinger operators related to the Stark effect
,” Commun. Math. Phys.
52
, 239
–254
(1977
).32.
J.
Avron
, I.
Herbst
, and B.
Simon
, “The Zeeman effect revisited
,” Phys. Lett. A
62
, 214
–216
(1977
).33.
J.
Avron
, I.
Herbst
, and B.
Simon
, “Formation of negative ions in magnetic fields
,” Phys. Rev. Lett.
39
, 1068
–1070
(1977
).34.
J.
Avron
, I.
Herbst
, and B.
Simon
, “Schrödinger operators with magnetic fields. I. General interactions
,” Duke Math. J.
45
, 847
–883
(1978
).35.
J. E.
Avron
, I. W.
Herbst
, and B.
Simon
, “Schrödinger operators with magnetic fields. II. Separation of center of mass in homogeneous magnetic fields
,” Ann. Phys.
114
, 431
–451
(1978
).36.
J. E.
Avron
, I. W.
Herbst
, and B.
Simon
, “Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field
,” Commun. Math. Phys.
79
, 529
–572
(1981
).37.
J. E.
Avron
, I. W.
Herbst
, and B.
Simon
, “Schrödinger operators with magnetic fields. IV. Strongly bound states of hydrogen in intense magnetic field
,” Phys. Rev. A
20
, 2287
–2296
(1979
).38.
J. E.
Avron
, L.
Sadun
, J.
Segert
, and B.
Simon
, “Topological invariants in Fermi systems with time-reversal invariance
,” Phys. Rev. Lett.
61
, 1329
–1332
(1988
).39.
J. E.
Avron
, L.
Sadun
, J.
Segert
, and B.
Simon
, “Chern numbers, quaternions, and Berry’s phases in Fermi systems
,” Commun. Math. Phys.
124
, 595
–627
(1989
).40.
J. E.
Avron
, R.
Seiler
, and B.
Simon
, “Homotopy and quantization in condensed matter physics
,” Phys. Rev. Lett.
51
, 51
–53
(1983
).41.
J. E.
Avron
, R.
Seiler
, and B.
Simon
, “The quantum Hall effect and the relative index for projections
,” Phys. Rev. Lett.
65
, 2185
–2188
(1990
).42.
J. E.
Avron
, R.
Seiler
, and B.
Simon
, “Charge deficiency, charge transport and comparison of dimensions
,” Commun. Math. Phys.
159
, 399
–422
(1994
).43.
J.
Avron
, R.
Seiler
, and B.
Simon
, “The index of a pair of projections
,” J. Funct. Anal.
120
, 220
–237
(1994
).44.
J.
Avron
and B.
Simon
, “A counterexample to the paramagnetic conjecture
,” Phys. Lett. A
75
, 41
–42
(1979
).45.
J. E.
Avron
and B.
Simon
, “Transient and recurrent spectrum
,” J. Funct. Anal.
43
, 1
–31
(1981
).46.
J.
Avron
and B.
Simon
, “The asymptotics of the gap in the Mathieu equation
,” Ann. Phys.
134
, 76
–84
(1981
).47.
J. E.
Avron
and B.
Simon
, “Almost periodic Hill’s equation and the rings of Saturn
,” Phys. Rev. Lett.
46
, 1166
–1168
(1981
).48.
J.
Avron
and B.
Simon
, “Almost periodic Schrödinger operators. I. Limit periodic potentials
,” Commun. Math. Phys.
82
, 101
–120
(1982
).49.
J.
Avron
and B.
Simon
, “Singular continuous spectrum for a class of almost periodic Jacobi matrices
,” Bull. Am. Math. Soc.
6
, 81
–85
(1982
).50.
J.
Avron
and B.
Simon
, “Almost periodic Schrödinger operators. II. The integrated density of states
,” Duke Math. J.
50
, 369
–391
(1983
).51.
J.
Avron
and B.
Simon
, “Stability of gaps for periodic potentials under variation of a magnetic field
,” J. Phys. A.: Math. Gen.
18
, 2199
–2205
(1985
).52.
J.
Avron
, B.
Simon
, and P.
van Mouche
, “On the measure of the spectrum for the almost Mathieu operator
,” Commun. Math. Phys.
132
, 103
–118
(1990
).53.
G.
Baker
, “The theory and application of the Padé approximant method
,” Adv. Theor. Phys.
1
, 1
–58
(1965
).54.
55.
The Padé Approximant in Theoretical Physics
, edited by G.
Baker
and J.
Gamel
(Academic Press
, New York
, 1970
).56.
E.
Balslev
and J. M.
Combes
, “Spectral properties of many-body Schrödinger operators with dilation analytic interactions
,” Commun. Math. Phys.
22
, 280
–294
(1971
).57.
V.
Bargmann
, “On the number of bound states in a central field of force
,” Proc. Natl. Acad. Sci. U. S. A.
38
, 961
–966
(1952
).58.
J.
Bellissard
, “Schrödinger operators with almost periodic potential: An overview
,” in Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics Vol. 153 (Springer
, New York
, 1982
), pp. 356
–363
[Proceedings of the VIth International Conference on Mathematical Physics Berlin (West), August 11–20,1981].59.
J.
Bellissard
, “Ordinary quantum Hall effect and non-commutative cohomology
,” in Localization in Disordered Systems, Bad Schandau Conference on Localization
, edited by Ziesche
and Weller
(Teubner-Verlag
, Leipzig
, 1988
), pp. 61
–74
.60.
J.
Bellissard
, “Gap labelling theorems for Schrödinger operators
,” in From Number Theory to Physics
, edited by M.
Waldschmidt
, et al. (Springer
, Les Houches; Berlin
, 1992; 1989
), pp. 538
–630
.61.
J.
Bellissard
, R.
Lima
, and D.
Testard
, Almost Periodic Schrödinger Operators
, Mathematics + Physics Vol. 1 (World Scientific Publishing
, Singapore
, 1985
), pp. 1
–64
.62.
J.
Bellissard
and B.
Simon
, “Cantor spectrum for the almost Mathieu equation
,” J. Funct. Anal.
48
, 408
–419
(1982
).63.
L.
Benassi
and V.
Grecchi
, “Resonances in the Stark effect and strongly asymptotic approximations
,” J. Phys. B: At. Mol. Phys.
13
, 911
–924
(1980
).64.
C. M.
Bender
and T. T.
Wu
, “Anharmonic oscillator
,” Phys. Rev.
184
, 1231
–1260
(1969
).65.
C. M.
Bender
and T. T.
Wu
, “Anharmonic oscillator. II. A study of perturbation theory in large order
,” Phys. Rev. D
7
, 1620
–1636
(1973
).66.
M. M.
Benderskiĭ
and L. A.
Pastur
, “On the spectrum of the one-dimensional Schrödinger equation with random potential
,” Mat. Sb.
82
, 273
–284
(1970
).67.
R.
Benguria
and E. H.
Lieb
, “Proof of the stability of highly negative ions in the absence of the Pauli principle
,” Phys. Rev. Lett.
50
, 1771
–1774
(1983
).68.
C.
Bennewitz
, “A proof of the local Borg-Marchenko theorem
,” Commun. Math. Phys.
218
, 131
–132
(2001
).69.
F.
Bentosela
, R.
Carmona
, P.
Duclos
, B.
Simon
, B.
Souillard
, and R.
Weder
, “Schrödinger operators with electric field and random or deterministic potential
,” Commun. Math. Phys.
88
, 387
–397
(1983
).70.
M. V.
Berry
, “Quantal phase factors accompanying adiabatic changes
,” Proc. R. Soc. London, Ser. A
392
, 45
–57
(1984
).71.
A.
Beurling
and J.
Deny
, “Espaces de dirichlet. I. Le cas élémentaire
,” Acta Math.
99
, 203
–224
(1958
).72.
M. S.
Birman
, “On the spectrum of singular boundary-value problems
,” Mat. Sb.
55
, 125
–174
(1961
)M. S.
Birman
[Trans. Am. Math. Soc.
53
, 23
–80
(1966
) (in English)].73.
M. S.
Birman
, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations
,” in Boundary Value Problems, Schrödinger Operators, Deformation Quantization
, Mathematical Topics Vol. 8 (Akademie Verlag
, Berlin
, 1995
), pp. 334
–352
.74.
M. S.
Birman
and V. V.
Borzov
, “The asymptotic behavior of the discrete spectrum of certain singular differential operators
,” in Problems of Mathematical Physics
, Spectral Theory Vol. 5, edited by M. S.
Birman
(Izdat. Leningrad. Univ.
, Leningrad
, 1971
), pp. 24
–38
.75.
M. S.
Birman
and M. Z.
Solomyak
, “Remarks on the spectral shift function
,” Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)
27
, 33
–46
(1972
)M. S.
Birman
and M. Z.
Solomyak
[J. Sov. Math.
3
, 408
–419
(1975
) (in English)].76.
M. S.
Birman
and M. Z.
Solomyak
, “Estimates of singular numbers of integral operators
,” Russ. Math. Surv.
32
, 15
–89
(1977
)M. S.
Birman
and M. Z.
Solomyak
[Usp. Mat. Nauk
32
, 17
–84
(1977
) (in Russian)].77.
R.
Blankenbecler
, M. L.
Goldberger
, and B.
Simon
, “The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians
,” Ann. Phys.
108
, 69
–78
(1977
).78.
G.
Borg
, “Uniqueness theorems in the spectral theory of −y″ + (λ − q(x))y = 0
,” in Proceedings of 11th Scandinavian Congress of Mathematicians
(Johan Grundt Tanums Forlag
, Oslo
, 1952
), pp. 276
–287
.79.
R.
Bott
and S. S.
Chern
, “Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections
,” Acta Math.
114
, 71
–112
(1965
).80.
A.
Böttcher
, I.
Spitkovsky
, and B.
Simon
, “Similarity between two projections
,” Integr. Equations Oper. Theory
89
, 507
–518
(2017
).81.
J.
Bourgain
and S.
Jitomirskaya
, “Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
,” J. Stat. Phys.
108
, 1203
–1218
(2002
).82.
J.
Breuer
, E.
Ryckman
, and B.
Simon
, “Equality of the spectral and dynamical definitions of reflection
,” Commun. Math. Phys.
295
, 531
–550
(2010
).83.
J.
Breuer
and B.
Simon
, “Natural boundaries and spectral theory
,” Adv. Math.
226
, 4902
–4920
(2011
).84.
J.
Breuer
, B.
Simon
, and O.
Zeitouni
, “Large deviations and sum rules for spectral theory—A pedagogical approach
,” J. Spectrosc. Theory
8
, 1551
–1581
(2018
).85.
J.
Breuer
, B.
Simon
, and O.
Zeitouni
, “Large deviations and the Lukic conjecture
,” Duke Math. J.
167
, 2857
–2902
(2018
).86.
H.
Brézis
and T.
Kato
, “Remarks on the Schrödinger operator with singular complex potentials
,” J. Math. Pures Appl.
58
, 137
–151
(1979
).87.
F.
Brownell
, “A note on Kato’s uniqueness criterion for Schrödinger operator self-adjoint extensions
,” Pac. J. Math.
9
, 953
–973
(1959
).88.
E.
Caliceti
, V.
Grecchi
, and M.
Maioli
, “Stark resonances: Asymptotics and distributional Borel sum
,” Commun. Math. Phys.
157
, 347
–357
(1993
).89.
M.
Campanino
and A.
Klein
, “A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model
,” Commun. Math. Phys.
104
, 227
–241
(1986
).90.
C.
Cancelier
, A.
Martinez
, and T.
Ramond
, “Quantum resonances without analyticity
,” Asymptotic Anal.
44
, 47
–74
(2005
).91.
T.
Carleman
, “Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes
,” Ark. Mat., Astron. Fys.
2B
, 1
–9
(1939
).92.
R.
Carmona
, “Regularity properties of Schrödinger and Dirichlet semigroups
,” J. Funct. Anal.
33
, 259
–296
(1974
).93.
R.
Carmona
, “Pointwise bounds for Schrödinger eigenstates
,” Commun. Math. Phys.
62
, 97
–106
(1978
).94.
R.
Carmona
, “One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types
,” J. Funct. Anal.
51
, 229
–258
(1983
).95.
R.
Carmona
, A.
Klein
, and F.
Martinelli
, “Anderson localization for Bernoulli and other singular potentials
,” Commun. Math. Phys.
108
, 41
–66
(1987
).96.
R.
Carmona
and J.
Lacroix
, Spectral Theory of Random Schrödinger Operators, Probability and its Applications
(Birkhäuser Boston, Inc.
, Boston, MA
, 1990
).97.
R.
Carmona
, W. C.
Masters
, and B.
Simon
, “Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions
,” J. Funct. Anal.
91
, 117
–142
(1990
).98.
R.
Carmona
and B.
Simon
, “Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals
,” Commun. Math. Phys.
80
, 59
–98
(1981
).99.
P.
Cartier
, “Inégalités de corrélation en mécanique statistique
,” Sémin. Bourbaki
1972/73
, 418
–435
(1974
); available at http://www.numdam.org/article/SB_1972-1973__15__242_0.pdf.100.
K. M.
Case
, “Orthogonal polynomials. II
,” J. Math. Phys.
16
, 1435
–1440
(1975
).101.
D.
Castelvecchi
, “The mathematician who helped to reshape physics
,” Nature
584
, 20
(2020
).102.
L.
Cattaneo
, G. M.
Graf
, and W.
Hunziker
, “A general resonance theory based on Mourre’s inequality
,” Ann. Inst. Henri Poincare
7
, 583
–601
(2006
).103.
J. R.
Choksi
and M. G.
Nadkarni
, “Baire category in spaces of measures, unitary operators and transformations
,” in Invariant Subspaces and Allied Topics
, edited by H.
Helson
and B. S.
Yadav
(Narosa Publishing Co.
, New Delhi
, 1990
), pp. 147
–163
.104.
J. R.
Choksi
and M. G.
Nadkarni
, “Genericity of certain classes of unitary and self-adjoint operators
,” Can. Math. Bull.
41
, 137
–139
(1998
).105.
M.
Christ
and A.
Kiselev
, “Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results
,” J. Am. Math. Soc.
11
, 771
–797
(1998
).106.
J. S.
Christiansen
, B.
Simon
, and M.
Zinchenko
, “Finite gap Jacobi matrices. I. The isospectral torus
,” Constr. Approximation
32
, 1
–65
(2010
).107.
J. S.
Christiansen
, B.
Simon
, and M.
Zinchenko
, “Finite gap Jacobi matrices. II. The Szegő class
,” Constr. Approximation
33
, 365
–403
(2011
).108.
J. S.
Christiansen
, B.
Simon
, and M.
Zinchenko
, “Finite gap Jacobi matrices. III. Beyond the Szegő class
,” Constr. Approximation
35
, 259
–272
(2012
).109.
J. S.
Christiansen
, B.
Simon
, and M.
Zinchenko
, “Asymptotics of Chebyshev polynomials. I. Subsets of
,” Invent. Math.
208
, 217
–245
(2017
).110.
J. S.
Christiansen
, B.
Simon
, and M.
Zinchenko
, “Some remarks on periodic Jacobi matrices on trees
,” J. Math. Phys.
62
, 042101
(2021
).111.
V. A.
Chulaevskiĭ
, “Perturbations of a Schrödinger operator with periodic potential
,” Usp. Mat. Nauk
36
, 203
–204
(1981
)V. A.
Chulaevskiĭ
[Russ. Math.
36
, 143
–144
(1981
) (in English)].112.
K.
Chung
and K.
Rao
, “Sur la théorie du potentiel avec la fonctionelle de Feynman–Kac
,” C. R. Acad. Sci. Paris, Sér. A
290
, 629
–631
(1980
).113.
J. M.
Combes
, P.
Duclos
, and R.
Seiler
, “Kreĭn’s formula and one-dimensional multiple-well
,” J. Funct. Anal.
52
, 257
–301
(1983
).114.
J. M.
Combes
and L.
Thomas
, “Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators
,” Commun. Math. Phys.
34
, 251
–270
(1973
).115.
C.
Conley
and P.
Rejto
, “Spectral concentration. II. General theory
,” in Perturbation Theory and its Applications in Quantum Mechanics
, edited by C. H.
Wilcox
(John Wiley & Sons
, New York
, 1966
), pp. 129
–143
.116.
J. G.
Conlon
, “A new proof of the Cwikel-Lieb-Rosenbljum bound
,” Rocky Mt. J. Math.
15
, 117
–122
(1985
).117.
J. M.
Cook
, “Convergence of the Møller wave matrix
,” J. Math. Phys.
36
, 82
–87
(1957
).118.
R.
Courant
and D.
Hilbert
, Methods of Mathematical Physics
(Interscience Publishers
, New York
, 1953
), Vol. I (original German version 1931).119.
R.
Courant
and D.
Hilbert
, Methods of Mathematical Physics
(Interscience Publishers
, New York
, 1962
), Vol. II.120.
W.
Craig
and B.
Simon
, “Subharmonicity of the Lyaponov index
,” Duke Math. J.
50
, 551
–560
(1983
).121.
W.
Craig
and B.
Simon
, “Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices
,” Commun. Math. Phys.
90
, 207
–218
(1983
).122.
M.
Cwikel
, “Weak type estimates for singular values and the number of bound states of Schrödinger operators
,” Ann. Math.
106
, 93
–102
(1977
).123.
H. L.
Cycon
, “Resonances defined by modified dilations
,” Helv. Phys. Acta
58
, 969
–981
(1985
).124.
H.
Cycon
, R.
Froese
, W.
Kirsch
, and B.
Simon
, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry
(Springer-Verlag
, Berlin
, 1987
).125.
B.
Dacorogna
, Direct Methods in the Calculus of Variations
, 2nd ed. (Springer
, New York
, 2008
);B.
Dacorogna
,Direct Methods in the Calculus of Variations
, 1st ed. (Springer
, New York
, 1989
).126.
D.
Damanik
, “Schrödinger operators with dynamically defined potentials
,” Ergodic Theory Dyn. Syst.
37
, 1681
–1764
(2017
).127.
D.
Damanik
and J.
Filman
, Spectral Theory of Discrete One-Dimensional Ergodic Schrödinger Operators
(in press).128.
D.
Damanik
and Z.
Gan
, “Spectral properties of limit-periodic Schrödinger operators
,” Commun. Pure Appl. Anal.
10
, 859
–871
(2011
).129.
D.
Damanik
, D.
Hundertmark
, and B.
Simon
, “Bound states and the Szegő condition for Jacobi matrices and Schrödinger operators
,” J. Funct. Anal.
205
, 357
–379
(2003
).130.
D.
Damanik
, R.
Killip
, and B.
Simon
, “Perturbations of orthogonal polynomials with periodic recursion coefficients
,” Ann. Math.
171
, 1931
–2010
(2010
).131.
D.
Damanik
and B.
Simon
, “Jost functions and Jost solutions for Jacobi matrices. I. A necessary and sufficient condition for Szegő asymptotics
,” Invent. Math.
165
, 1
–50
(2006
).132.
E. B.
Davies
, “The twisting trick for double well Hamiltonians
,” Commun. Math. Phys.
85
, 471
–479
(1982
).133.
134.
E. B.
Davies
and B.
Simon
, “Scattering theory for systems with different spatial asymptotics on the left and right
,” Commun. Math. Phys.
63
, 277
–301
(1978
).135.
E. B.
Davies
and B.
Simon
, “Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians
,” J. Funct. Anal.
59
, 335
–395
(1984
).136.
E. B.
Davies
and B.
Simon
, “Spectral properties of the Neumann Laplacian of horns
,” Geom. Funct. Anal.
2
, 105
–117
(1992
).137.
P. A.
Deift
, “Applications of a commutation formula
,” Duke Math. J.
45
, 267
–310
(1978
).138.
P. A.
Deift
, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
, Courant Lecture Notes in Mathematics Vol. 3 (Courant Institute of Mathematical Sciences, New York University
, New York
, 1999
).139.
P.
Deift
, W.
Hunziker
, B.
Simon
, and E.
Vock
, “Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. IV
,” Commun. Math. Phys.
64
, 1
–34
(1978/79
).140.
P.
Deift
and R.
Killip
, “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials
,” Commun. Math. Phys.
203
, 341
–347
(1999
).141.
P.
Deift
and B.
Simon
, “On the decoupling of the finite singularities from the question of asymptotic completeness in two body quantum systems
,” J. Funct. Anal.
23
, 218
–238
(1976
).142.
P.
Deift
and B.
Simon
, “A time-dependent approach to the completeness of multiparticle quantum systems
,” Commun. Pure Appl. Math.
30
, 573
–583
(1977
).143.
P.
Deift
and B.
Simon
, “Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension
,” Commun. Math. Phys.
90
, 389
–411
(1983
).144.
R.
del Río
, “A forbidden set for embedded eigenvalues
,” Proc. Am. Math. Soc.
121
, 77
–82
(1994
).145.
R.
del-Rio
, F.
Gesztesy
, and B.
Simon
, “Inverse spectral analysis with partial information on the potential. III. Updating boundary conditions
,” Int. Math. Res. Not.
1997
, 751
–758
.146.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “What is localization?
,” Phys. Rev. Lett.
75
, 117
–119
(1995
).147.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization
,” J. Anal. Math.
69
, 153
–200
(1996
).148.
R.
del Rio
, S.
Jitomirskaya
, N.
Makarov
, and B.
Simon
, “Singular continuous spectrum is generic
,” Bull. Am. Math. Soc.
31
, 208
–212
(1994
).149.
R.
del Rio
, N.
Makarov
, and B.
Simon
, “Operators with singular continuous spectrum. II. Rank one operators
,” Commun. Math. Phys.
165
, 59
–67
(1994
).150.
F.
Delyon
, “Appearance of a purely singular continuous spectrum in a class of random Schrödinger operators
,” J. Stat. Phys.
40
, 621
–630
(1985
).151.
F.
Delyon
, H.
Kunz
, and B.
Souillard
, “One dimensional wave equations in disordered media
,” J. Phys. A: Math. Gen.
16
, 25
–42
(1983
).152.
F.
Delyon
, Y.-E.
Lévy
, and B.
Souillard
, “An approach à la Borland to multidimensional Anderson localization
,” Phys. Rev. Lett.
55
, 618
–621
(1985
).153.
F.
Delyon
, Y.
Lévy
, and B.
Souillard
, “Anderson localization for multi-dimensional systems at large disorder or large energy
,” Commun. Math. Phys.
100
, 463
–470
(1985
).154.
F.
Delyon
, Y.
Lévy
, and B.
Souillard
, “Anderson localization for one- and quasi one-dimensional systems
,” J. Stat. Phys.
41
, 375
–388
(1985
).155.
F.
Delyon
, B.
Simon
, and B.
Souillard
, “From power localized to extended states in a class of one-dimensional disordered systems
,” Phys. Rev. Lett.
52
, 2187
–2189
(1984
).156.
F.
Delyon
, B.
Simon
, and B.
Souillard
, “From power pure point to continuous spectrum in disordered systems
,” Ann. Inst. Henri Poincare
42
, 283
–309
(1985
); available at http://www.numdam.org/item/AIHPA_1985__42_3_283_0/.157.
F.
Delyon
, B.
Simon
, and B.
Souillard
, “Localization for off-diagonal disorder and for continuous Schrödinger operators
,” Commun. Math. Phys.
109
, 157
–165
(1987
).158.
F.
Delyon
and B.
Souillard
, “The rotation number for finite difference operators and its properties
,” Commun. Math. Phys.
89
, 415
–426
(1983
).159.
F.
Delyon
and B.
Souillard
, “Remark on the continuity of the density of states of ergodic finite difference operators
,” Commun. Math. Phys.
94
, 289
–291
(1984
).160.
S. A.
Denisov
, “On the coexistence of absolutely continuous and singular continuous components of the spectral measure for some Sturm-Liouville operators with square summable potential
,” J. Differ. Equations
191
, 90
–104
(2003
).161.
J.
Derezinski
, “Asymptotic completeness of long–range N–body quantum systems
,” Ann. Math.
138
, 427
–476
(1993
).162.
R. L.
Dobrushin
, “Gibbsian random fields for lattice systems with pairwise interactions
,” Funct. Anal. Appl.
2
, 292
–301
(1968
).163.
R. L.
Dobrushin
, “The description of a random field by means of conditional probabilities and conditions of its regularity
,” Theory Probab. Appl.
13
, 197
–224
(1968
).164.
R. L.
Dobrushin
and E. A.
Pecherski
, Uniqueness Conditions for Finitely Dependent Random Fields, Random Fields
(Esztergom
, 1979
), Vols. I and II, pp. 223
–261
.165.
J. D.
Dollard
, “Asymptotic convergence and the Coulomb interaction
,” J. Math. Phys.
5
, 729
–738
(1964
).166.
J.
Dombrowski
, “Quasitriangular matrices
,” Proc. Am. Math. Soc.
69
, 95
–96
(1978
).167.
W. F.
Donoghue
, Jr., “On the perturbation of spectra
,” Commun. Pure Appl. Math.
18
, 559
–579
(1965
).168.
B. A.
Dubrovin
, V. B.
Matveev
, and S. P.
Novikov
, “Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties
,” Usp. Mat. Nauk
31
, 55
–136
(1976
).169.
F.
Dunlop
and C. M.
Newman
, “Multicomponent field theories and classical rotators
,” Commun. Math. Phys.
44
, 223
–235
(1975
).170.
S.
Dyatlov
and M.
Zworski
, Mathematical Theory of Scattering Resonances
(American Mathematical Society
, Providence
, 2019
).171.
F. J.
Dyson
, “Divergence of perturbation theory in quantum electrodynamics
,” Phys. Rev.
85
, 631
–632
(1952
).172.
F. J.
Dyson
, “Statistical theory of the energy levels of complex systems. I
,” J. Math. Phys.
3
, 140
–156
(1962
).173.
F. J.
Dyson
, “Existence of a phase transition in a one-dimensional Ising ferromagnet
,” Commun. Math. Phys.
12
, 91
–107
(1969
).174.
F. J.
Dyson
, E. H.
Lieb
, and B.
Simon
, “Phase transitions in the quantum Heisenberg model
,” Phys. Rev. Lett.
37
, 120
–123
(1976
).175.
F. J.
Dyson
, E. H.
Lieb
, and B.
Simon
, “Phase transitions in quantum spin systems with isotropic and nonisotropic interactions
,” J. Stat. Phys.
18
, 335
–383
(1978
).176.
J.-P.
Eckmann
, J.
Magnen
, and R.
Sénéor
, “Decay properties and Borel summability for the Schwinger functions in P(φ)2 theories
,” Commun. Math. Phys.
39
, 251
–271
(1975
).177.
E. G.
Effros
, “Why the circle is connected: An introduction to quantized topology
,” Math. Intell.
11
, 27
–34
(1989
).178.
R. S.
Ellis
, J. L.
Monroe
, and C. M.
Newman
, “The GHS and other correlation inequalities for a class of even ferromagnets
,” Commun. Math. Phys.
46
, 167
–182
(1976
).179.
V.
Enss
, “A note on Hunziker’s theorem
,” Commun. Math. Phys.
52
, 233
–238
(1977
).180.
V.
Enss
, “Asymptotic completeness for quantum mechanical potential scattering
,” Commun. Math. Phys.
61
, 258
–291
(1978
).181.
V.
Enss
and B.
Simon
, “Bounds on total cross-sections in atom-atom and atom-ion collisions by geometric methods
,” Phys. Rev. Lett.
44
, 319
–321
(1980
).182.
V.
Enss
and B.
Simon
, “Finite total cross-sections in non-relativistic quantum mechanics
,” Commun. Math. Phys.
76
, 177
–210
(1980
).183.
P. S.
Epstein
, “Zur theorie des starkeffektes
,” Ann. Phys.
50
, 489
–520
(1916
).184.
P. S.
Epstein
, “The Stark effect from the point of view of Schroedinger’s quantum theory
,” Phys. Rev.
28
, 695
–710
(1926
).185.
A.
Eremenko
and A.
Gabrielov
, “Analytic continuation of eigenvalues of a quartic oscillator
,” Commun. Math. Phys.
287
, 431
–457
(2009
).186.
W. D.
Evans
and D. J.
Harris
, “Sobolev embeddings for generalised ridge domains
,” Proc. London Math. Soc.
s3-54
, 141
–175
(1987
).187.
L. D.
Faddeev
, “Mathematical questions in the quantum theory of scattering for a system of three particles
,” Tr. Mat. Inst. Steklova 69
, 1
–122
(1963
) [L.
Meroz
, Israel Program for Scientific Translations Jerusalem
(Daniel Davey & Co., Inc.
, New York
, 1965
) (in English)].188.
K.
Falconer
, Fractal Geometry, Mathematical Foundations and Applications
, 3rd ed. (John Wiley & Sons, Ltd.
, Chichester
, 2014
);K.
Falconer
,Fractal Geometry, Mathematical Foundations and Applications
, 1st ed. (John Wiley & Sons, Ltd.
, Chichester
, 1990
).189.
P.
Federbush
, “A partially alternate derivation of a result of Nelson
,” J. Math. Phys.
10
, 50
–52
(1969
).190.
C. L.
Fefferman
, “The uncertainty principle
,” Bull. Am. Math. Soc.
9
, 129
–206
(1983
).191.
C. L.
Fefferman
and L. A.
Seco
, “On the energy of a large atom
,” Bull. Am. Math. Soc.
23
, 525
–530
(1990
).192.
E.
Fermi
, “Un metodo statistico per la determinazione di alcune proprietà dell’atomo
,” Rend. Accad. Naz. Lincei
6
, 602
–607
(1927
).193.
A.
Figotin
and L.
Pastur
, “An exactly solvable model of a multidimensional incommensurate structure
,” Commun. Math. Phys.
95
, 410
–425
(1984
).194.
S.
Fishman
, D. R.
Grempel
, and R. E.
Prange
, “Chaos, quantum recurrences, and Anderson localization
,” Phys. Rev. Lett.
49
, 509
–512
(1982
).195.
S.
Fishman
, D. R.
Grempel
, and R. E.
Prange
, “Localization in a d-dimensional incommensurate structure
,” Phys. Rev. B
29
, 4272
–4276
(1984
).196.
C. M.
Fortuin
, P. W.
Kasteleyn
, and J.
Ginibre
, “Correlation inequalities on some partially ordered sets
,” Commun. Math. Phys.
22
, 89
–103
(1971
).197.
R.
Frank
, “Cwikel’s theorem and the CLR inequality
,” J. Spectrosc. Theory
4
, 1
–21
(2014
).198.
R. L.
Frank
, “The Lieb-Thirring inequalities: Recent results and open problems
,” in Nine Mahematical Challenges: An Elucidation
, edited by A.
Kechris
, N.
Makarov
, D.
Ramakrishnan
, and X.
Zhu
(American Mathematical Society
, Providence, RI
, 2015
); arXiv:2007.09326.199.
R. L.
Frank
, D.
Gontier
, and M.
Lewin
, “The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
,” Comm. Math. Phys.
384
, 1783
–1828
(2021
).200.
R. L.
Frank
, K.
Merz
, H.
Siedentop
, and B.
Simon
, “Proof of the strong Scott conjecture for chandrasekhar atoms
,” Pure Appl. Funct. Anal.
5
, 1319
–1356
(2020
).201.
R. L.
Frank
, A.
Laptev
, and T.
Weidl
, Lieb–Thirring Inequalities
(unpublished).202.
R. L.
Frank
and B.
Simon
, “Critical Lieb-Thirring bounds in gaps and the generalized Nevai conjecture for finite gap Jacobi matrices
,” Duke Math. J.
157
, 461
–493
(2011
).203.
R.
Frank
and B.
Simon
, “Eigenvalue bounds for Schrödinger operators with complex potentials. II
,” J. Spectrosc. Theory
7
, 633
–658
(2017
).204.
R. L.
Frank
, B.
Simon
, and T.
Weidl
, “Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states
,” Commun. Math. Phys.
282
, 199
–208
(2008
).205.
206.
K. O.
Friedrichs
, “On the perturbation of continuous spectra
,” Commun. Pure Appl. Math.
1
, 361
–406
(1948
).207.
R.
Froese
and I.
Herbst
, “A new proof of the Mourre estimate
,” Duke Math. J.
49
, 1075
–1085
(1982
).208.
R.
Froese
and I.
Herbst
, “Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators
,” Commun. Math. Phys.
87
, 429
–447
(1982
).209.
J.
Fröhlich
, “On the triviality of theories and the approach to the critical point in d ≥ 4 dimensions
,” Nucl. Phys. B
200
, 281
–296
(1982
).210.
J.
Fröhlich
, R.
Israel
, E. H.
Lieb
, and B.
Simon
, “Phase transitions and reflection positivity. I. General theory and long range interactions
,” Commun. Math. Phys.
62
, 1
–34
(1978
).211.
J.
Fröhlich
, R.
Israel
, E.
Lieb
, and B.
Simon
, “Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions
,” J. Stat. Phys.
22
, 297
–341
(1980
).212.
J.
Fröhlich
and E. H.
Lieb
, “Phase transitions in anisotropic lattice spin systems
,” Commun. Math. Phys.
60
, 233
–267
(1978
).213.
J.
Fröhlich
and B.
Simon
, “Pure states for general P(φ)2 theories: Construction, regularity and variational equality
,” Ann. Math.
105
, 493
–526
(1977
).214.
J.
Fröhlich
, B.
Simon
, and T.
Spencer
, “Phase transitions and continuous symmetry breaking
,” Phys. Rev. Lett.
36
, 804
–806
(1976
).215.
J.
Fröhlich
, B.
Simon
, and T.
Spencer
, “Infrared bounds, phase transitions and continuous symmetry breaking
,” Commun. Math. Phys.
50
, 79
–85
(1976
).216.
J.
Fröhlich
and T.
Spencer
, “The phase transition in the one-dimensional Ising model with 1/r2 interaction energy
,” Commun. Math. Phys.
84
, 87
–101
(1982
).217.
J.
Fröhlich
and T.
Spencer
, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,” Commun. Math. Phys.
88
, 151
–184
(1983
).218.
J.
Fröhlich
and T.
Spencer
, “A rigorous approach to Anderson localization
,” Phys. Rep.
103
, 9
–25
(1984
).219.
G.
Fubini
, “Sulle metriche definite da una forme Hermitiana
,” Atti R. Ist. Veneto Sci., Lett. Arti
63
, 502
–513
(1904
).220.
W.
Fulton
and J.
Harris
, Representation Theory: A First Course
, Graduate Texts in Mathematics Vol. 129 (Springer-Verlag
, New York
, 1991
).221.
H.
Furstenberg
, “Noncommuting random products
,” Trans. Am. Math. Soc.
108
, 377
–428
(1963
).222.
F.
Gamboa
, J.
Nagel
, and A.
Rouault
, “Sum rules via large deviations
,” J. Funct. Anal.
270
, 509
–559
(2016
).223.
L.
Gårding
, “On the essential spectrum of Schrödinger operators
,” J. Funct. Anal.
52
, 1
–10
(1983
).224.
C. S.
Gardner
, J. M.
Greene
, M. D.
Kruskal
, and R. M.
Miura
, “Korteweg-deVries equation and generalizations. VI. Methods for exact solution
,” Commun. Pure Appl. Math.
27
, 97
–133
(1974
).225.
L.
Garrigue
, “Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem
,” 21
, 27
(2018
);L.
Garrigue
, “Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II: The Pauli Hamiltonian
,” Doc. Math.
25
, 869
–898
(2020
).226.
V.
Georgescu
and A.
Iftimovici
, “Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians
,” Commun. Math. Phys.
228
, 519
–560
(2002
).227.
I. M.
Gel’fand
and B. M.
Levitan
, “On the determination of a differential equation from its spectral function
,” Izv. Akad. Nauk SSR, Ser. Mat.
15
, 309
–360
(1951
)I. M.
Gel’fand
and B. M.
Levitan
[Am. Math. Soc.Transl. Ser. 2
1
, 253
–304
(1955
) (in English)].228.
C.
Gérard
, “Distortion analyticity for N-particle Hamiltonians
,” Helv. Phys. Acta
66
, 216
–225
(1993
).229.
C.
Gérard
and I. M.
Sigal
, “Time-space picture of resonance
,” Commun. Math. Phys.
145
, 281
–328
(1992
).230.
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday 2 Volumes
, Symposia in Pure Mathematics Vol. 76, edited by F.
Gesztesy
, P.
Deift
, C.
Galvez
, P.
Perry
, and W.
Schlag
(American Mathematical Society
, Providence, RI
, 2007
).231.
F.
Gesztesy
, H.
Holden
, and B.
Simon
, “Absolute summability of the trace relation for certain Schrödinger operators
,” Commun. Math. Phys.
168
, 137
–161
(1995
).232.
F.
Gesztesy
, H.
Holden
, B.
Simon
, and Z.
Zhao
, “Higher order trace relations for Schrödinger operators
,” Rev. Math. Phys.
07
, 893
–922
(1995
).233.
F.
Gesztesy
, H.
Holden
, B.
Simon
, and Z.
Zhao
, “A trace formula for multidimensional Schrödinger operators
,” J. Funct. Anal.
141
, 449
–465
(1996
).234.
F.
Gesztesy
and A.
Sakhnovich
, “The inverse approach to Dirac-type systems based on the A-function concept
,” J. Funct. Anal.
279
, 108609
(2020
).235.
F.
Gesztesy
and B.
Simon
, “Rank one perturbations at infinite coupling
,” J. Funct. Anal.
128
, 245
–252
(1995
).236.
F.
Gesztesy
and B.
Simon
, “The xi function
,” Acta Math.
176
, 49
–71
(1996
).237.
F.
Gesztesy
and B.
Simon
, “Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators
,” Trans. Am. Math. Soc.
348
, 349
–373
(1996
).238.
F.
Gesztesy
and B.
Simon
, “Inverse spectral analysis with partial information on the potential. I. The case of an A.C. component in the spectrum
,” Helv. Phys. Acta
70
, 66
–71
(1997
).239.
F.
Gesztesy
and B.
Simon
, “Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum
,” Trans. Am. Math. Soc.
352
, 2765
–2787
(2000
).240.
F.
Gesztesy
and B.
Simon
, “m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices
,” J. Anal. Math.
73
, 267
–297
(1997
).241.
F.
Gesztesy
and B.
Simon
, “On the determination of a potential from three spectra
,” in Differential Operators and Spectral Theory: M. Sh. Birman’s 70th Anniversary Collection
, edited by V.
Buslaev
, M.
Solomyak
, and D.
Yafaev
(American Mathematical Society
, Providence, RI
, 1999
) [Am. Math. Soc. Transl. 189
(2
), 85
–92
(1999
)].242.
F.
Gesztesy
and B.
Simon
, “A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure
,” Ann. Math.
152
, 593
–643
(2000
).243.
F.
Gesztesy
and B.
Simon
, “On local Borg-Marchenko uniqueness results
,” Commun. Math. Phys.
211
, 273
–287
(2000
).244.
F.
Gesztesy
and B.
Simon
, “Connectedness of the isospectral manifold for one-dimensional half-line Schrödinger operators
,” J. Stat. Phys.
116
, 361
–365
(2004
).245.
E.
Getzler
, “A short proof of the Atiyah-Singer index theorems
,” Topology
25
, 111
–117
(1986
).246.
D. J.
Gilbert
, “On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints
,” Proc. R. Soc. Edinburgh, Sect. A: Math.
112
, 213
–229
(1989
).247.
D. J.
Gilbert
and D. B.
Pearson
, “On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators
,” J. Math. Anal. Appl.
128
, 30
–56
(1987
).248.
J.
Ginibre
, “Existence of phase transitions for quantum lattice systems
,” Commun. Math. Phys.
14
, 205
–234
(1969
).249.
J.
Ginibre
, “General formulation of Griffths’ inequalities
,” Commun. Math. Phys.
16
, 310
–328
(1970
).250.
J.
Glimm
, “Boson fields with nonlinear self-interaction in two dimensions
,” Commun. Math. Phys.
8
, 12
–25
(1968
).251.
J.
Glimm
and A.
Jaffe
, “A λφ4 quantum field without cutoffs, I
,” Phys. Rev.
176
(2
), 1945
–1951
(1968
).252.
J.
Glimm
and A.
Jaffe
, “The quantum field theory without cutoffs. III. The physical vacuum
,” Acta Math.
125
, 203
–261
(1970
).253.
J.
Glimm
and A.
Jaffe
, “The quantum field theory without cutoffs. IV. Perturbations of the Hamiltonian
,” J. Math. Phys.
13
, 1568
–1584
(1972
).254.
J.
Glimm
and A.
Jaffe
, Quantum Physics. A Functional Integral Point of View
(Springer-Verlag
, Berlin, NY
, 1981
).255.
J.
Glimm
, A.
Jaffe
, and T.
Spencer
, “The Wightman axioms and particle structure in P(φ)2
,” Ann. Math.
100
, 585
–632
(1974
).256.
J.
Glimm
, A.
Jaffe
, and T.
Spencer
, “Phase transitions for quantum fields
,” Commun. Math. Phys.
45
, 203
–216
(1975
).257.
V.
Glaser
, H.
Grosse
, and A.
Martin
, “Bounds on the number of eigenvalues of the Schrödinger operator
,” Commun. Math. Phys.
59
, 197
–212
(1978
).258.
I. C.
Goh’berg
and M. G.
Krein
, Introduction to the Theory of Linear Nonselfadjoint Operators
, Translations of Mathematical Monographs (American Mathematical Society
, Providence, RI
, 1969
).259.
I.
Ja Goldsheid
, S. A.
Molcanov
, and L. A.
Pastur
, “A pure point spectrum of the stochastic one dimensional Schrödinger operator
,” Funct. Anal. Appl.
11
, 1
–10
(1977
).260.
A. Ya.
Gordon
, “On the point spectrum of the one-dimensional Schrödinger operators
,” Usp. Math. Nauk
31
, 257
–258
(1976
).261.
A. Ya.
Gordon
, “On exceptional values of the boundary phase for the Schrödinger equation of a half-line
,” Usp. Math. Nauk
47
, 211
–212
(1992
)A. Ya.
Gordon
[Russ. Math. Surv.
47
, 260
–261
(1992
) (in English)].262.
A. Y.
Gordon
, “Pure point spectrum under 1-parameter perturbations and instability of Anderson localization
,” Commun. Math. Phys.
164
, 489
–505
(1994
).263.
Y. A.
Gordon
, V.
Jakšić
, S.
Molčanov
, and B.
Simon
, “Spectral properties of random Schrödinger operators with unbounded potentials
,” Commun. Math. Phys.
157
, 23
–50
(1993
).264.
A. Y.
Gordon
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “Duality and singular continuous spectrum in the almost Mathieu equation
,” Acta Math.
178
, 169
–183
(1997
).265.
A. Y.
Gordon
, S. A.
Molžanov
, and B.
Tsagani
, “Spectral theory of one-dimensional Schrödinger operators with strongly fluctuating potential
,” Funct. Anal. Appl.
25
, 236
–238
(1991
).266.
G. M.
Graf
, “Asymptotic completeness for N-body short-range quantum systems: A new proof
,” Commun. Math. Phys.
132
, 73
–101
(1990
).267.
S.
Graffi
and V.
Grecchi
, “On a relation between Stieltjes and Borel summabilities
,” J. Math. Phys.
19
, 1002
–1007
(1978
).268.
S.
Graffi
and V.
Grecchi
, “Resonances in Stark effect and perturbation theory
,” Commun. Math. Phys.
62
, 83
–96
(1978
).269.
S.
Graffi
and V.
Grecchi
, “Existence and Borel summability of resonances in hydrogen Stark effect
,” Lett. Math. Phys.
3
, 336
–340
(1978
).270.
S.
Graffi
and V.
Grecchi
, “Confinement of the resonances in hydrogen Stark effect
,” J. Phys. B At., Mol. Opt. Phys.
12
, L265
–L267
(1979
).271.
S.
Graffi
and V.
Grecchi
, “Resonances in the Stark effect of atomic systems
,” Commun. Math. Phys.
79
, 91
–109
(1981
).272.
S.
Graffi
, V.
Grecchi
, S.
Levoni
, and M.
Maioli
, “Resonances in one-dimensional Stark effect and continued fractions
,” J. Math. Phys.
20
, 685
–690
(1979
).273.
S.
Graffi
, V.
Grecchi
, and B.
Simon
, “Borel summability: Application to the anharmonic oscillator
,” Phys. Lett. D
32
, 631
–634
(1970
).274.
S.
Graffi
, V.
Grecchi
, and B.
Simon
, “Complete separability of the Stark effect in hydrogen
,” J. Phys. B: At. Mol. Phys.
12
, L193
–L195
(1979
).275.
D. R.
Grempel
, S.
Fishman
, and R. E.
Prange
, “Localization in an incommensurate potential: An exactly solvable model
,” Phys. Rev. Lett.
49
, 833
–836
(1982
).276.
R. B.
Griffiths
, “Correlations in Ising ferromagnets. I
,” J. Math. Phys.
8
, 478
–483
(1967
).277.
R. B.
Griffiths
, “Correlations in Ising ferromagnets. II. External magnetic fields
,” J. Math. Phys.
8
, 484
–489
(1967
).278.
R. B.
Griffiths
, “Correlations in Ising ferromagnets. III
,” Commun. Math. Phys.
6
, 121
–127
(1967
).279.
R. B.
Griffiths
, “Rigorous results for Ising ferromagnets of arbitrary spin
,” J. Math. Phys.
10
, 1559
–1565
(1969
).280.
R. B.
Griffiths
, C. A.
Hurst
, and S.
Sherman
, “Concavity of magnetization of an Ising ferromagnet in a positive external field
,” J. Math. Phys.
11
, 790
–795
(1970
).281.
R.
Griffiths
and B.
Simon
, “Griffiths-Hurst-Sherman inequalities and a Lee-Yang theorem for the field theory
,” Phys. Rev. Lett.
30
, 931
–933
(1973
).282.
R.
Griffiths
and B.
Simon
, “The field theory as a classical Ising model
,” Commun. Math. Phys.
33
, 145
–164
(1973
).283.
L.
Gross
, “Logarithmic Sobolev inequalities
,” Am. J. Math.
97
, 1061
–1083
(1975
).284.
H.
Grosse
and J.
Stubbe
, “Splitting of Landau levels in the presence of external potentials
,” Lett. Math. Phys.
34
, 59
–68
(1995
).285.
A.
Grossman
and T. T.
Wu
, “Schrödinger scattering amplitude. I
,” J. Math. Phys.
2
, 710
–713
(1961
);A.
Grossman
and T. T.
Wu
,“Schrödinger scattering amplitude. III
,” J. Math. Phys.
3
, 684
–689
(1962
).286.
F.
Guerra
, “Uniqueness of the vacuum energy density and Van Hove phenomenon in the infinite volume limit for two-dimensional self-coupled bose fields
,” Phys. Rev. Lett.
28
, 1213
–1215
(1972
).287.
F.
Guerra
, “Exponential bounds in lattice field theory
,” in Les Méthodes Mathématiques de la Théorie Quantique des Champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975)
(Centre National de la Recherche Scientifique
, Paris
, 1976
), pp. 185
–205
.288.
F.
Guerra
, L.
Rosen
, and B.
Simon
, “Nelson’s Symmetry and the infinite volume behaviour of the vacuum in P(φ)2
,” Commun. Math. Phys.
27
, 10
–22
(1972
).289.
F.
Guerra
, L.
Rosen
, and B.
Simon
, “The vacuum energy for P(φ)2: Infinite volume limit and coupling constant dependence
,” Commun. Math. Phys.
29
, 233
–247
(1973
).290.
F.
Guerra
, L.
Rosen
, and B.
Simon
, “Statistical mechanical results in the P(φ)2 quantum field theory
,” Phys. Lett. B
44
, 102
–104
(1973
).291.
F.
Guerra
, L.
Rosen
, and B.
Simon
, “The P(φ)2 Euclidean quantum field theory as classical statistical mechanics
,” Ann. Math.
101
, 111
–189
(1975
).292.
F.
Guerra
, L.
Rosen
, and B.
Simon
, “Correlation inequalities and the mass gap in P(φ)2. III. Mass gap for a class of strongly coupled theories with nonzero external field
,” Commun. Math. Phys.
41
, 19
–32
(1975
).293.
M. N.
Hack
, “On the convergence to the Møller wave operators
,” Nuovo Cimento
9
, 731
–733
(1958
).294.
M. N.
Hack
, “Wave operators in multichannel scattering
,” Nuovo Cimento X
13
, 231
–236
(1959
).295.
B.
Halperin
, “Properties of a particle in a one-dimensional random potential
,” Adv. Chem. Phys.
31
, 123
–177
(1967
).296.
297.
E.
Harrell
and B.
Simon
, “The mathematical theory of resonances whose widths are exponentially small
,” Duke Math. J.
47
, 845
–902
(1980
).298.
299.
B.
Helffer
and A.
Mohamed
, “Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique
,” Ann. Inst. Fourier
38
, 95
–112
(1988
).300.
B.
Helffer
and D.
Robert
, “Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques
,” Ann. Inst. Fourier
31
, 169
–223
(1981
); available at http://www.numdam.org/item/?id=AIF_1981__31_3_169_0.301.
B.
Helffer
and J.
Sjöstrand
, “Multiple wells in the semiclassical limit. I
,” Commun. Partial Differ. Equations
9
, 337
–408
(1984
).302.
B.
Helffer
and J.
Sjöstrand
, “Résonances en limite semi–classique [Resonances in the semiclassical limit]
,” Mém. Soc. Math. France (N.S.)
(in press).303.
L.
Helms
, Potential Theory
, Universitext (Springer-Verlag
, London
, 2009
).304.
R.
Hempel
, I.
Herbst
, A. M.
Hinz
, and H.
Kalf
, “Intervals of dense point spectrum for spherically symmetric Schrödinger operators of the type −Δ + cos |x|
,” J. London Math. Soc.
s2-43
, 295
–304
(1991
).305.
R.
Hempel
, L. A.
Seco
, and B.
Simon
, “The essential spectrum of Neumann Laplacians on some bounded singular domains
,” J. Funct. Anal.
102
, 448
–483
(1991
).306.
D. C.
Herbert
and R.
Jones
, “Localized states in disordered systems
,” J. Phys. C: Solid State Phys.
4
, 1145
–1161
(1971
).307.
I. W.
Herbst
, “Unitary equivalence of Stark Hamiltonians
,” Math. Z.
155
, 55
–71
(1977
).308.
I. W.
Herbst
, “Dilation analyticity in constant electric field. I: The two body problem
,” Commun. Math. Phys.
64
, 279
–298
(1979
).309.
I.
Herbst
, J. S.
Møller
, and E.
Skibsted
, “Spectral analysis of N–body Stark Hamiltonians
,” Commun. Math. Phys.
174
, 261
–294
(1995
).310.
I. W.
Herbst
and B.
Simon
, “Some remarkable examples in eigenvalue perturbation theory
,” Phys. Lett. B
78
, 304
–306
(1978
).311.
I. W.
Herbst
and B.
Simon
, “Dilation analyticity in constant electric field. II: The N-body problem, Borel summability
,” Commun. Math. Phys.
80
, 181
–216
(1981
).312.
M. R.
Herman
, “Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2
,” Commun. Math. Helv.
58
, 453
–502
(1983
).313.
H.
Hess
, R.
Schrader
, and D. A.
Uhlenbrock
, “Domination of semigroups and generalization of Kato’s inequality
,” Duke Math. J.
44
, 893
–904
(1977
).314.
E.
Hille
, “Some aspects of the Thomas-Fermi equation
,” J. Anal. Math.
23
, 147
–170
(1970
).315.
H.
Hochstadt
and B.
Lieberman
, “An inverse Sturm-Liouville problem with mixed given data
,” SIAM J. Appl. Math.
34
, 676
–680
(1978
).316.
A.
Hof
, O.
Knill
, and B.
Simon
, “Singular continuous spectrum for palindromic Schrödinger operators
,” Commun. Math. Phys.
174
, 149
–159
(1995
).317.
M.
Hoffmann-Ostenhof
, T.
Hoffmann-Ostenhof
, and B.
Simon
, “A multiparticle Coulomb system with bound state at threshold
,” J. Phys. A: Math. Gen.
16
, 1125
–1131
(1983
).318.
D. R.
Hofstadter
, “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
,” Phys. Rev. B
14
, 2239
–2249
(1976
).319.
320.
P. C.
Hohenberg
, “Existence of long-range order in one and two dimensions
,” Phys. Rev.
158
, 383
–386
(1967
).321.
J. S.
Howland
, “Spectral concentration and virtual poles
,” Am. J. Math.
91
, 1106
–1126
(1969
).322.
J. S.
Howland
, “Embedded eigenvalues and virtual poles
,” Pac. J. Math.
29
, 565
–582
(1969
).323.
J. S.
Howland
, “Spectral concentration and virtual poles. II
,” Trans. Am. Math. Soc.
162
, 141
–156
(1971
).324.
J. S.
Howland
, “Perturbation of embedded eigenvalues
,” Bull. Am. Math. Soc.
78
, 280
–283
(1972
).325.
J.
Howland
, “Puiseux series for resonances at an embedded eigenvalue
,” Pac. J. Math.
55
, 157
–176
(1974
).326.
C. W.
Hsu
, B.
Zhen
, A. D.
Stone
, J. D.
Joannopoulos
, and M.
Soljačić
, “Bound states in the continuum
,” Nat. Rev. Mater.
1
, 16048
(2016
).327.
W.
Hughes
, “An atomic lower bound that agrees with Scott’s correction
,” Adv. Math.
79
, 213
–270
(1990
).328.
D.
Hundertmark
, “Some bound state problems in quantum mechanics
,” in , edited by F.
Gesztesy
, P.
Deift
, C.
Galvez
, P.
Perry
, and W.
Schlag
(Proceedings of Symposia in Pure Mathematics
, 2007
), Vol. 76.2.329.
D.
Hundertmark
, P.
Kunstmann
, T.
Ried
, and S.
Vugalter
, “Cwikel’s bound reloaded
,” arXiv:1809.05069.330.
D.
Hundertmark
, E. H.
Lieb
, and L. E.
Thomas
, “A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator
,” Adv. Theor. Math. Phys.
2
, 719
–731
(1998
).331.
D.
Hundertmark
and B.
Simon
, “Lieb-Thirring inequalities for Jacobi matrices
,” J. Approximation Theory
118
, 106
–130
(2002
).332.
D.
Hundertmark
and B.
Simon
, “A diamagnetic inequality for semigroup differences
,” J. Reine Angew. Math.
571
, 107
–130
(2004
).333.
D.
Hundertmark
and B.
Simon
, “Eigenvalue bounds in the gaps of Schrödinger operators and Jacobi matrices
,” J. Math. Anal. Appl.
340
, 892
–900
(2008
).334.
W.
Hunziker
, “Proof of a conjecture of S. Weinberg
,” Phys. Rev. B
135
, 800
–803
(1964
).335.
W.
Hunziker
, “On the spectra of Schrödinger multiparticle Hamiltonians
,” Helv. Phys. Acta
39
, 451
–462
(1966
).336.
W.
Hunziker
, “Distortion analyticity and molecular resonance curves
,” Ann. Inst. Henri Poincare, Sect. A
45
, 339
–358
(1986
); available at http://www.numdam.org/item/?id=AIHPA_1986__45_4_339_0.337.
W.
Hunziker
and I. M.
Sigal
, “The quantum N-body problem
,” J. Math. Phys.
41
, 3448
–3510
(2000
).338.
A.
Iantchenko
, E. H.
Lieb
, and H.
Siedentop
, “Proof of a conjecture about atomic and molecular cores related to Scott’s correction
,” in (Springer, Berlin, Heidelberg,
, 1995
), pp. 127
–145
.339.
T.
Ikebe
and T.
Kato
, “Uniqueness of the self-adjoint extensions of singular elliptic differential operators
,” Arch. Ration. Mech. Anal.
9
, 77
–92
(1962
).340.
E. L.
Ince
, “Research into the characteristic numbers of Mathieu equation
,” Proc. R. Soc. Edinburgh
46
, 20
–29
(1927
).341.
R. J.
Iorio
and M.
O’Carroll
, “Asymptotic completeness for multi-particle Schroedinger Hamiltonians with weak potentials
,” Commun. Math. Phys.
27
, 137
–145
(1972
).342.
K.
Ishii
, “Localization of eigenstates and transport phenomena in one-dimensional disordered systems
,” Prog. Theor. Phys. Suppl.
53
, 77
–138
(1973
).343.
V. J.
Ivrii
and I. M.
Sigal
, “Asymptotics of the ground state energies of large Coulomb systems
,” Ann. Math.
138
, 243
–335
(1993
).344.
C.
Jacobi
, Vorlesungen über Dynamik
, 1st ed. (G. Reiner
, Berlin
, 1866; 1884
), based on lectures given in 1842–43, published posthumously.345.
A.
Jaffe
, “Divergence of perturbation theory for bosons
,” Commun. Math. Phys.
1
, 127
–149
(1965
).346.
A.
Jaffe
and E.
Witten
, “Quantum Yang-Mills theory
,” in The Millennium Prize Problems
(Clay Mathematics Institute
, Cambridge, MA
, 2006
), pp. 129
–152
.347.
V.
Jakšić
and Y.
Last
, “Spectral structure of Anderson type Hamiltonians
,” Invent. Math.
141
, 561
–577
(2000
).348.
V.
Jakšić
and Y.
Last
, “Simplicity of singular spectrum in Anderson-type Hamiltonians
,” Duke Math. J.
133
, 185
–204
(2006
).349.
V.
Jakšić
and Y.
Last
, “A new proof of Poltoratskii’s theorem
,” J. Funct. Anal.
215
, 103
–110
(2004
).350.
V.
Jakšić
, S.
Molčanov
, and B.
Simon
, “Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps
,” J. Funct. Anal.
106
, 59
–79
(1992
).351.
V. A.
Javrjan
, “A certain inverse problem for Sturm–Liouville operators
,” Izv. Akad. Nauk SSR, Ser. Mat.
6
, 246
–251
(1971
).352.
A.
Jensen
, “Local distortion technique, resonances, and poles of the S-matrix
,” J. Math. Anal. Appl.
59
, 505
–513
(1977
).353.
A.
Jensen
and T.
Kato
, “Spectral properties of Schrödinger operators and time-decay of the wave functions
,” Duke Math. J.
46
, 583
–611
(1979
).354.
A.
Jensen
and G.
Nenciu
, “The Fermi golden rule and its form at thresholds in odd dimensions
,” Commun. Math. Phys.
261
, 693
–727
(2006
).355.
D.
Jerison
and C. E.
Kenig
, “Unique continuation and absence of positive eigenvalues for Schrödinger operators
,” Ann. Math.
121
, 463
–494
(1985
).356.
S.
Jitomirskaya
, “Almost everything about the almost Mathieu operator. II
,” in XIth International Congress of Mathematical Physics, Paris, 1994
(International Press
, Cambridge, MA
, 1995
), pp. 373
–382
.357.
S. Y.
Jitomirskaya
, “Metal-insulator transition for the almost Mathieu operator
,” Ann. Math.
150
, 1159
–1175
(1999
).358.
S.
Jitomirskaya
, “Ergodic Schrödinger operators (on one foot)
,” in , edited by F.
Gesztesy
, P.
Deift
, C.
Galvez
, P.
Perry
, and W.
Schlag
(Proceedings of Symposia in Pure Mathematics
, 2007
), Vol. 76.2.359.
S.
Jitomirskaya
, “On point spectrum of critical almost Mathieu operators
,” Adv. Math.
392
, 107997
(2021
).360.
S.
Jitomirskaya1
and I.
Krasovsky
, “Critical almost Mathieu operator: Hidden singularity, gap continuity, and the Hausdorff dimension of the spectrum
,” arXiv:1909.04429.361.
S.
Jitomirskaya
and W.
Liu
, “Universal hierarchical structure of quasiperiodic eigenfunctions
,” Ann. Math.
187
, 721
–776
(2018
).362.
S.
Jitomirskaya
and W.
Liu
, “Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” arXiv:1802.00781.363.
S.
Jitomirskaya
and C.
Marx
, “Dynamics and spectral theory of quasi-periodic Schrödinger-type operators
,” Ergodic Theory Dyn. Syst.
37
, 2353
–2393
(2017
).364.
S.
Jitomirskaya
and B.
Simon
, “Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,” Commun. Math. Phys.
165
, 201
–205
(1994
).365.
R. A.
Johnson
, “Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients
,” J. Differ. Equations
61
, 54
–78
(1986
).366.
R.
Johnson
and J.
Moser
, “The rotation number for almost periodic potentials
,” Commun. Math. Phys.
84
, 403
–438
(1982
).367.
K.
Jörgens
and J.
Weidmann
, Spectral Properties of Hamiltonian Operators
, Lecture Notes in Mathematics Vol. 313 (Springer
, Berlin; New York
, 1973
).368.
R.
Jost
, The General Theory of Quantized Fields
, Lectures in Applied Mathematics Vol. IV (American Mathematical Society
, Providence, RI
, 1965
) (Proceedings of the Summer Seminar, Boulder, Colorado, 1960).369.
I. S.
Kac
, “On the multiplicity of the spectrum of a second order differential operator and the associated eigenfunction expansion
,” Izv. Akad. Nauk. SSSR, Ser. Mat.
27
, 1081
–112
(1963
)370.
H.
Kalf
, “The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators
,” Isr. J. Math.
20
, 57
–69
(1975
).371.
P. W.
Kasteleyn
and R. J.
Boel
, “Extremal Λ-inequalities for Ising models with pair interactions
,” Commun. Math. Phys.
66
, 167
–179
(1979
).372.
T.
Kato
, “On the convergence of the perturbation method. I
,” Prog. Theor. Phys.
4
, 514
–523
(1949
);T.
Kato
, “On the convergence of the perturbation method. II.1
,” Prog. Theor. Phys.
5
, 95
–101
; 207
–212
(1950
);T.
Kato
, “On the convergence of the perturbation method. II.2
,” Prog. Theor. Phys.
5
, 207
–212
(1950
).373.
T.
Kato
, “On the adiabatic theorem for quantum mechanics
,” J. Phys. Soc. Jpn.
5
, 435
–439
(1950
).374.
T.
Kato
, “On the convergence of the perturbation method
,” J. Fac. Sci., Univ. Tokyo, Sect. 1
6
, 145
–226
(1951
).375.
T.
Kato
, “Fundamental properties of Hamiltonian operators of Schrödinger type
,” Trans. Am. Math. Soc.
70
, 195
–211
(1951
).376.
T.
Kato
, “On the existence of solutions of the helium wave equation
,” Trans. Am. Math. Soc.
70
, 212
–218
(1951
).377.
T.
Kato
, “Perturbation theory of semi-bounded operators
,” Math. Ann.
125
, 435
–447
(1953
).378.
T.
Kato
, “On finite-dimensional perturbations of self-adjoint operators
,” J. Math. Soc. Jpn.
9
, 239
–249
(1957
).379.
T.
Kato
, “Perturbation of continuous spectra by trace class operators
,” Proc. Jpn. Acad.
33
, 260
–264
(1957
).380.
T.
Kato
, “Growth properties of solutions of the reduced wave equation with a variable coefficient
,” Commun. Pure Appl. Math.
12
, 403
–425
(1959
).381.
T.
Kato
, “Wave operators and similarity for some non-selfadjoint operators
,” Math. Ann.
162
, 258
–279
(1966
).382.
T.
Kato
, “Smooth operators and commutators
,” Stud. Math.
31
, 535
–546
(1968
).383.
T.
Kato
, “Schrödinger operators with singular potentials
,” Isr. J. Math.
13
, 135
–148
(1972
).384.
T.
Kato
, “A second look at the essential self-adjointness of the Schrödinger operators
,” in Physical Reality and Mathematical Description
, edited by C.
Enz
and J.
Mehra
(Reidel
, Dordrecht
, 1974
), pp. 193
–201
.385.
T.
Kato
, Perturbation Theory for Linear Operators
, Grundlehren der Mathematischen Wissenschaften, Band 132, 2nd ed. (Springer
, Berlin; New York
, 1976
) (1st ed. 1966; there is also a revised and correctd 1980 printing).386.
T.
Kato
, “Scattering theory and perturbation of continuous spectra
,” in Actes du Congr és International des Math ématiciens
(1970
), Vol. 1, pp. 135
–140
.387.
T.
Kato
, “Remarks on Schrödinger operators with vector potentials
,” Integr. Equations Oper. Theory
1
, 103
–113
(1978
).388.
T.
Kato
, “On some Schrödinger operators with a singular complex potential
,” Ann. Sc. Norm. Super. Pisa-Cl. Sci., IV
5
, 105
–114
(1978
).389.
T.
Kato
, “On the Cook-Kuroda criterion in scattering theory
,” Commun. Math. Phys.
67
, 85
–90
(1979
).390.
T.
Kato
, “Remarks on the selfadjointness and related problems for differential operators
,” in Spectral Theory of Differential Operators
, Proceedings of the Conference held at the Birmingham, USA, 1981, edited by I.
Knowles
and R.
Lewis
(North-Holland
, 1981
), pp. 253
–266
.391.
T.
Kato
, “Nonselfadjoint Schrödinger operators with singular first-order coefficients
,” Proc. R. Soc. Edinburgh, Sect. A: Math.
96
, 323
–329
(1984
).392.
T.
Kato
, “LP-theory of Schrödinger operators with a singular potential
,” in Aspects of Positivity in Functional Analysis
, edited by R.
Nagel
, U.
Schlotterbeck
, and M.
Wolff
(North-Holland
, 1986
), pp. 63
–78
.393.
D. G.
Kelly
and S.
Sherman
, “General Griffiths’ inequalities on correlations in Ising ferromagnets
,” J. Math. Phys.
9
, 466
–484
(1968
).394.
T.
Kennedy
, E. H.
Lieb
, and B. S.
Shastry
, “Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets
,” J. Stat. Phys.
53
, 1019
–1030
(1988
).395.
T.
Kennedy
and B.
Nachtergale
, “The Heisenberg model—A bibliography
,” available at https://www.math.ucdavis.edu/~bxn/qs.html.396.
R.
Killip
and B.
Simon
, “Sum rules for Jacobi matrices and their applications to spectral theory
,” Ann. Math.
158
, 253
–321
(2003
).397.
A. A.
Kirillov
, “Unitary representations of nilpotent Lie groups
,” Russ. Math. Surv.
17
, 53
–104
(1962
).398.
W.
Kirsch
and B.
Metzger
, “The integrated density of states for random Schrödinger operators
,” (published online); available at https://web.ma.utexas.edu/mp_arc/c/06/06-225.pdf.399.
W.
Kirsch
and B.
Simon
, “Lifshitz tails for periodic plus random potentials
,” J. Stat. Phys.
42
, 799
–808
(1986
).400.
W.
Kirsch
and B.
Simon
, “Universal lower bounds on eigenvalue splittings for one dimensional Schrödinger operators
,” Commun. Math. Phys.
97
, 453
–460
(1985
).401.
W.
Kirsch
and B.
Simon
, “Comparison theorems for the gap of Schrödinger operators
,” J. Funct. Anal.
75
, 396
–410
(1987
).402.
W.
Kirsch
and B.
Simon
, “Corrections to the classical behavior of the number of bound states of Schrödinger operators
,” Ann. Phys.
183
, 122
–130
(1988
).403.
A.
Kiselev
, “Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials
,” Commun. Math. Phys.
179
, 377
–400
(1996
).404.
A.
Kiselev
, “Imbedded singular continuous spectrum for Schrödinger operators
,” J. Am. Math. Soc.
18
, 571
–603
(2005
).405.
A.
Kiselev
, Y.
Last
, and B.
Simon
, “Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators
,” Commun. Math. Phys.
194
, 1
–45
(1998
).406.
A.
Kiselev
and B.
Simon
, “Rank one perturbations with infinitesimal coupling
,” J. Funct. Anal.
130
, 345
–356
(1995
).407.
M.
Klaus
, “On the bound state of Schrödinger operators in one dimension
,” Ann. Phys.
108
, 288
–300
(1977
).408.
M.
Klaus
and B.
Simon
, “Binding of Schrödinger particles through conspiracy of potential wells
,” Ann. Inst. Henri Poincare, Sect. A
30
, 83
–87
(1979
).409.
M.
Klaus
and B.
Simon
, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short range two-body case
,” Ann. Phys.
130
, 251
–281
(1980
).410.
M.
Klaus
and B.
Simon
, “Coupling constant threshold in non-relativistic quantum mechanics. II. Two-cluster thresholds in N-body systems
,” Commun. Math. Phys.
78
, 153
–168
(1980
).411.
A.
Klein
, L. J.
Landau
, and D. S.
Shucker
, “On the absence of spontaneous breakdown of continuous symmetry for equilibrium states in two dimensions
,” J. Stat. Phys.
26
, 505
–512
(1981
).412.
A.
Klein
and A.
Speis
, “Regularity of the invariant measure and of the density of states in the one-dimensional Anderson model
,” J. Funct. Anal.
88
, 211
–227
(1990
).413.
H.
Koch
and D.
Tataru
, “Carleman estimates and unique continuation for second order elliptic equations with nonsmooth coefficients
,” Commun. Pure Appl. Math.
54
, 339
–360
(2001
).414.
B.
Kostant
, On the Definition of Quantization
, Géométrie Symplectique et Physique Mathématique (CNRS
, Paris
, 1974
).415.
S.
Kotani
, “Ljaponov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators
,” in Stochastic Analysis
, edited by K.
Ito
(North Holland
, Amsterdam
, 1984
), pp. 225
–248
.416.
S.
Kotani
, “Lyapunov exponents and spectra for one-dimensional random Schrödinger operators
,” in Random Matrices and Their Applications, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Bowdoin College, Brunswick, ME, June 17–23, 1984
, edited by J. E.
Cohen
, H.
Kesten
, and C. M.
Newman
, Contemporary Mathematics Vol. 50 (American Mathematical Society
, Providence, RI
, 1986
), pp. 277
–286
.417.
S.
Kotani
, “Jacobi matrices with random potentials taking finitely many values
,” Rev. Math. Phys.
01
, 129
–133
(1989
).418.
S.
Kotani
, “Generalized Floquet theory for stationary Schrödinger operators in one dimension
,” Chaos, Solitons Fractals
8
, 1817
–1854
(1997
).419.
S.
Kotani
and B.
Simon
, “Localization in general one-dimensional random systems. II. Continuum Schrödinger operators
,” Commun. Math. Phys.
112
, 103
–119
(1987
).420.
S.
Kotani
and B.
Simon
, “Stochastic Schrödinger operators and Jacobi matrices on the strip
,” Commun. Math. Phys.
119
, 403
–429
(1988
).421.
S.
Kotani
and N.
Ushiroya
, “One-dimensional Schrödinger operators with random decaying potentials
,” Commun. Math. Phys.
115
, 247
–266
(1988
).422.
H. A.
Kramers
, “Théorie générale de la rotation paramagnétique dans les cristaux
,” Proc. K. Akad. Wet.
33
, 959
–972
(1930
).423.
H.
Kunz
and C.-E.
Pfister
, “First order phase transition in the plane rotor ferromagnetic model in two dimensions
,” Commun. Math. Phys.
46
, 245
–251
(1976
).424.
H.
Kunz
, C. E.
Pfister
, and P. A.
Vuillermot
, “Inequalities for some classical spin vector models
,” J. Phys. A.: Math. Gen.
9
, 1673
–1683
(1976
).425.
H.
Kunz
and B.
Souillard
, “Sur le spectre des operateurs aux differences finies aleatoires
,” Commun. Math. Phys.
78
, 201
–246
(1980
).426.
Analysis as a Tool in Mathematical Physics: In Memory of Boris Pavlov
, edited by P.
Kurasov
, A.
Laptev
, S.
Naboko
, and B.
Simon
(Birkhauser
, 2020
).427.
S. T.
Kuroda
, “On a theorem of Weyl-von Neumann
,” Proc. Jpn. Acad.
34
, 11
–15
(1958
).428.
S. T.
Kuroda
, “On the existence and the unitarity property of the scattering operator
,” Nuovo Cimento
12
, 431
–454
(1959
).429.
S. T.
Kuroda
, “Perturbation of continuous spectra by unbounded operators. II
,” J. Math. Soc. Jpn.
12
, 243
–257
(1960
).430.
S. T.
Kuroda
, “Scattering theory for differential operators, I, operator theory
,” J. Math. Soc. Jpn.
25
, 75
–104
(1973
).431.
S. T.
Kuroda
, “Scattering theory for differential operators, II, self–adjoint elliptic operators
,” J. Math. Soc. Jpn.
25
, 222
–234
(1973
).432.
C.
Lanczos
, “Zur theorie des starkeffektes in hohen feldern
,” Z. Phys.
62
, 518
–544
(1930
);C.
Lanczos
, “Zur verschiebung der wasserstoffterme in hohen elektrischen feldern
,” Z. Phys.
65
, 431
–455
(1930
);C.
Lanczos
, “Zur intensitätsschwächung der spektrallinien in hohen feldern
,” Z. Phys.
68
, 204
–232
(1931
).433.
L. D.
Landau
and E. M.
Lifshitz
, Quantum Mechanics: Non-Relativistic Theory
, Course of Theoretical Physics Vol. 3 (Addison-Wesley Publishing Co., Inc.
, Reading, MA
, 1958
) [J. B.
Sykes
and J. S.
Bell
, 1948
(in Russian)].434.
O. E.
Lanford
and D.
Ruelle
, “Observables at infinity and states with short-range correlations in statistical mechanics
,” Commun. Math. Phys.
13
, 194
–215
(1969
).435.
A.
Laptev
and T.
Weidl
, “Sharp Lieb-Thirring inequalities in high dimensions
,” Acta Math.
184
, 87
–111
(2000
).436.
Y.
Last
, “A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants
,” Commun. Math. Phys.
151
, 183
–192
(1993
).437.
Y.
Last
, “Zero measure spectrum for the almost Mathieu operator
,” Commun. Math. Phys.
164
, 421
–432
(1994
).438.
Y.
Last
, “Almost everything about the almost Mathieu operator. I
,” in XIth International Congress of Mathematical Physics, Paris, 1994
(International Press
, Cambridge, MA
, 1995
), pp. 366
–372
.439.
Y.
Last
and B.
Simon
, “Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators
,” Invent. Math.
135
, 329
–367
(1999
).440.
Y.
Last
and B.
Simon
, “The essential spectrum of Schrödinger, Jacobi, and CMV operators
,” J. Anal. Math.
98
, 183
–220
(2006
).