This is an extended version of my 2018 Heineman prize lecture describing the work for which I got the prize. The citation is very broad, so this describes virtually all my work prior to 1995 and some afterward. It discusses work in non-relativistic quantum mechanics, constructive quantum field theory, and statistical mechanics.

1.
J. F.
Adams
,
Lectures on Lie Groups
(
W.A. Benjamin
,
New York
,
1969
).
2.
F.
Adiceam
,
D.
Damanik
,
F.
Gähler
,
U.
Grimm
,
A.
Haynes
,
A.
Julien
,
A.
Navas
,
L.
Sadun
, and
B.
Weiss
, “
Open problems and conjectures related to the theory of mathematical quasicrystals
,”
Arnold Math. J.
2
,
579
592
(
2016
).
3.
S.
Agmon
, “
Spectral properties of Schrödinger operators and scattering theory
,”
Ann. Sc. Norm. Super. Pisa -Cl. Sci.
2
,
151
218
(
1975
); available at http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/.
4.
S.
Agmon
,
Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations
(
Princeton University Press
,
Princeton
,
1982
).
5.
J.
Aguilar
and
J. M.
Combes
, “
A class of analytic perturbations for one-body Schrödinger Hamiltonians
,”
Commun. Math. Phys.
22
,
269
279
(
1971
).
6.
Y.
Aharonov
and
J.
Anandan
, “
Phase change during a cyclic quantum evolution
,”
Phys. Rev. Lett.
58
,
1593
1596
(
1987
).
7.
M.
Aizenman
, “
Geometric analysis of φ4 fields and Ising models. Parts I and II
,”
Commun. Math. Phys.
86
,
1
48
(
1982
).
8.
M.
Aizenman
, “
Localization at weak disorder: Some elementary bounds
,”
Rev. Math. Phys.
6
,
1163
1182
(
1994
).
9.
M.
Aizenman
and
H.
Duminil-Copin
, “
Marginal triviality of the scaling limits of critical 4D Ising and Φ44 models
,”
Ann. Math.
194
,
163
235
(
2021
).
10.
M.
Aizenman
and
E. H.
Lieb
, “
On semi-classical bounds for eigenvalues of Schrödinger operators
,”
Phys. Lett. A
66
,
427
429
(
1978
).
11.
M.
Aizenman
and
S.
Molchanov
, “
Localization at large disorder and at extreme energies: An elementary derivation
,”
Commun. Math. Phys.
157
,
245
278
(
1993
).
12.
M.
Aizenman
and
B.
Simon
, “
Local Ward identities and the decay of correlations in ferromagnets
,”
Commun. Math. Phys.
77
,
137
143
(
1980
).
13.
M.
Aizenman
and
B.
Simon
, “
A comparison of plane rotor Ising models
,”
Phys. Lett. A
76
,
281
282
(
1980
).
14.
M.
Aizenman
and
B.
Simon
, “
Brownian motion and Harnack’s inequality for Schrödinger operators
,”
Commun. Pure Appl. Math.
35
,
209
273
(
1982
).
15.
M.
Aizenman
and
S.
Warzel
,
Random Operators: Disorder Effects on Quantum Spectra and Dynamics
, Graduate Studies in Mathematics Vol. 168 (
American Mathematical Society
,
Providence, RI
,
2015
).
16.
A.
Alonso
and
B.
Simon
, “
The Birman-Krein-Vishik theory of self-adjoint extension of semibounded operators
,”
J. Oper. Theory
4
,
251
270
(
1980
).
17.
W. O.
Amrein
and
K. B.
Sinha
, “
On pairs of projections in a Hilbert space
,”
Linear Algebra Appl.
208–209
,
425
435
(
1994
).
18.
P. W.
Anderson
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
,
1492
1505
(
1958
).
19.
G.
André
and
S.
Aubry
, “
Analyticity breaking and Anderson localization in incommensurate lattices
,”
Ann. Isr. Phys. Soc.
3
,
133
164
(
1980
).
20.
N.
Aronszajn
, “
On a problem of Weyl in the theory of singular Sturm–Liouville equations
,”
Am. J. Math.
79
,
597
610
(
1957
).
21.
N.
Aronszajn
and
W. F.
Donoghue
, “
On exponential representations of analytic functions in the upper half plane with positive imaginary part
,”
J. Anal. Math.
5
,
321
388
(
1956
).
22.
T.
Asano
, “
Generalization of the Lee–Yang theorem
,”
Prog. Theor. Phys.
40
,
1328
1336
(
1968
).
23.
S.
Aubry
, “
The new concept of transition by breaking of analyticity
,” in
Solitons and Condensed Matter Physics
, edited by
A. R.
Bishop
and
T.
Schneider
(
Springer
,
Berlin
,
1978
), pp.
264
277
.
24.
A.
Avila
, “
Absolutely continuous spectrum for the almost Mathieu operator
,” arXiv:0810.2965 (
2008
).
25.
A.
Avila
and
S.
Jitomirskaya
, “
The ten martini problem
,”
Ann. Math.
170
,
303
342
(
2009
).
26.
A.
Avila
,
S.
Jitomirskaya
, and
C. A.
Marx
, “
Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
,”
Invent. Math.
210
,
283
339
(
2017
).
27.
A.
Avila
,
Y.
Last
, and
B.
Simon
, “
Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum
,”
Anal. Partial Differ. Equations
3
,
81
108
(
2010
).
28.
A.
Avila
,
J.
You
, and
Q.
Zhou
, “
Sharp phase transitions for the almost Mathieu operator
,”
Duke Math. J.
166
,
2697
2718
(
2017
).
29.
S.
Avramska-Lukarska
,
D.
Hundertmark
, and
H.
Kovarik
, “
Absence of positive eigenvalues of magnetic Schrödinger operators
,” arXiv:2003.07294 (
2020
).
30.
J. E.
Avron
, “
Bender-Wu formulas for the Zeeman effect in hydrogen
,”
Ann. Phys.
131
,
73
94
(
1981
).
31.
J. E.
Avron
and
I. W.
Herbst
, “
Spectral and scattering theory of Schrödinger operators related to the Stark effect
,”
Commun. Math. Phys.
52
,
239
254
(
1977
).
32.
J.
Avron
,
I.
Herbst
, and
B.
Simon
, “
The Zeeman effect revisited
,”
Phys. Lett. A
62
,
214
216
(
1977
).
33.
J.
Avron
,
I.
Herbst
, and
B.
Simon
, “
Formation of negative ions in magnetic fields
,”
Phys. Rev. Lett.
39
,
1068
1070
(
1977
).
34.
J.
Avron
,
I.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. I. General interactions
,”
Duke Math. J.
45
,
847
883
(
1978
).
35.
J. E.
Avron
,
I. W.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. II. Separation of center of mass in homogeneous magnetic fields
,”
Ann. Phys.
114
,
431
451
(
1978
).
36.
J. E.
Avron
,
I. W.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field
,”
Commun. Math. Phys.
79
,
529
572
(
1981
).
37.
J. E.
Avron
,
I. W.
Herbst
, and
B.
Simon
, “
Schrödinger operators with magnetic fields. IV. Strongly bound states of hydrogen in intense magnetic field
,”
Phys. Rev. A
20
,
2287
2296
(
1979
).
38.
J. E.
Avron
,
L.
Sadun
,
J.
Segert
, and
B.
Simon
, “
Topological invariants in Fermi systems with time-reversal invariance
,”
Phys. Rev. Lett.
61
,
1329
1332
(
1988
).
39.
J. E.
Avron
,
L.
Sadun
,
J.
Segert
, and
B.
Simon
, “
Chern numbers, quaternions, and Berry’s phases in Fermi systems
,”
Commun. Math. Phys.
124
,
595
627
(
1989
).
40.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Homotopy and quantization in condensed matter physics
,”
Phys. Rev. Lett.
51
,
51
53
(
1983
).
41.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
The quantum Hall effect and the relative index for projections
,”
Phys. Rev. Lett.
65
,
2185
2188
(
1990
).
42.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
,
399
422
(
1994
).
43.
J.
Avron
,
R.
Seiler
, and
B.
Simon
, “
The index of a pair of projections
,”
J. Funct. Anal.
120
,
220
237
(
1994
).
44.
J.
Avron
and
B.
Simon
, “
A counterexample to the paramagnetic conjecture
,”
Phys. Lett. A
75
,
41
42
(
1979
).
45.
J. E.
Avron
and
B.
Simon
, “
Transient and recurrent spectrum
,”
J. Funct. Anal.
43
,
1
31
(
1981
).
46.
J.
Avron
and
B.
Simon
, “
The asymptotics of the gap in the Mathieu equation
,”
Ann. Phys.
134
,
76
84
(
1981
).
47.
J. E.
Avron
and
B.
Simon
, “
Almost periodic Hill’s equation and the rings of Saturn
,”
Phys. Rev. Lett.
46
,
1166
1168
(
1981
).
48.
J.
Avron
and
B.
Simon
, “
Almost periodic Schrödinger operators. I. Limit periodic potentials
,”
Commun. Math. Phys.
82
,
101
120
(
1982
).
49.
J.
Avron
and
B.
Simon
, “
Singular continuous spectrum for a class of almost periodic Jacobi matrices
,”
Bull. Am. Math. Soc.
6
,
81
85
(
1982
).
50.
J.
Avron
and
B.
Simon
, “
Almost periodic Schrödinger operators. II. The integrated density of states
,”
Duke Math. J.
50
,
369
391
(
1983
).
51.
J.
Avron
and
B.
Simon
, “
Stability of gaps for periodic potentials under variation of a magnetic field
,”
J. Phys. A.: Math. Gen.
18
,
2199
2205
(
1985
).
52.
J.
Avron
,
B.
Simon
, and
P.
van Mouche
, “
On the measure of the spectrum for the almost Mathieu operator
,”
Commun. Math. Phys.
132
,
103
118
(
1990
).
53.
G.
Baker
, “
The theory and application of the Padé approximant method
,”
Adv. Theor. Phys.
1
,
1
58
(
1965
).
54.
G.
Baker
,
Essentials of Padé Approximants
(
Academic Press
,
New York
,
1975
).
55.
The Padé Approximant in Theoretical Physics
, edited by
G.
Baker
and
J.
Gamel
(
Academic Press
,
New York
,
1970
).
56.
E.
Balslev
and
J. M.
Combes
, “
Spectral properties of many-body Schrödinger operators with dilation analytic interactions
,”
Commun. Math. Phys.
22
,
280
294
(
1971
).
57.
V.
Bargmann
, “
On the number of bound states in a central field of force
,”
Proc. Natl. Acad. Sci. U. S. A.
38
,
961
966
(
1952
).
58.
J.
Bellissard
, “
Schrödinger operators with almost periodic potential: An overview
,” in
Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics Vol. 153 (
Springer
,
New York
,
1982
), pp.
356
363
[Proceedings of the VIth International Conference on Mathematical Physics Berlin (West), August 11–20,1981].
59.
J.
Bellissard
, “
Ordinary quantum Hall effect and non-commutative cohomology
,” in
Localization in Disordered Systems, Bad Schandau Conference on Localization
, edited by
Ziesche
and
Weller
(
Teubner-Verlag
,
Leipzig
,
1988
), pp.
61
74
.
60.
J.
Bellissard
, “
Gap labelling theorems for Schrödinger operators
,” in
From Number Theory to Physics
, edited by
M.
Waldschmidt
, et al.
(
Springer
,
Les Houches; Berlin
,
1992; 1989
), pp.
538
630
.
61.
J.
Bellissard
,
R.
Lima
, and
D.
Testard
,
Almost Periodic Schrödinger Operators
, Mathematics + Physics Vol. 1 (
World Scientific Publishing
,
Singapore
,
1985
), pp.
1
64
.
62.
J.
Bellissard
and
B.
Simon
, “
Cantor spectrum for the almost Mathieu equation
,”
J. Funct. Anal.
48
,
408
419
(
1982
).
63.
L.
Benassi
and
V.
Grecchi
, “
Resonances in the Stark effect and strongly asymptotic approximations
,”
J. Phys. B: At. Mol. Phys.
13
,
911
924
(
1980
).
64.
C. M.
Bender
and
T. T.
Wu
, “
Anharmonic oscillator
,”
Phys. Rev.
184
,
1231
1260
(
1969
).
65.
C. M.
Bender
and
T. T.
Wu
, “
Anharmonic oscillator. II. A study of perturbation theory in large order
,”
Phys. Rev. D
7
,
1620
1636
(
1973
).
66.
M. M.
Benderskiĭ
and
L. A.
Pastur
, “
On the spectrum of the one-dimensional Schrödinger equation with random potential
,”
Mat. Sb.
82
,
273
284
(
1970
).
67.
R.
Benguria
and
E. H.
Lieb
, “
Proof of the stability of highly negative ions in the absence of the Pauli principle
,”
Phys. Rev. Lett.
50
,
1771
1774
(
1983
).
68.
C.
Bennewitz
, “
A proof of the local Borg-Marchenko theorem
,”
Commun. Math. Phys.
218
,
131
132
(
2001
).
69.
F.
Bentosela
,
R.
Carmona
,
P.
Duclos
,
B.
Simon
,
B.
Souillard
, and
R.
Weder
, “
Schrödinger operators with electric field and random or deterministic potential
,”
Commun. Math. Phys.
88
,
387
397
(
1983
).
70.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London, Ser. A
392
,
45
57
(
1984
).
71.
A.
Beurling
and
J.
Deny
, “
Espaces de dirichlet. I. Le cas élémentaire
,”
Acta Math.
99
,
203
224
(
1958
).
72.
M. S.
Birman
, “
On the spectrum of singular boundary-value problems
,”
Mat. Sb.
55
,
125
174
(
1961
)
M. S.
Birman
[
Trans. Am. Math. Soc.
53
,
23
80
(
1966
) (in English)].
73.
M. S.
Birman
, “
The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations
,” in
Boundary Value Problems, Schrödinger Operators, Deformation Quantization
, Mathematical Topics Vol. 8 (
Akademie Verlag
,
Berlin
,
1995
), pp.
334
352
.
74.
M. S.
Birman
and
V. V.
Borzov
, “
The asymptotic behavior of the discrete spectrum of certain singular differential operators
,” in
Problems of Mathematical Physics
, Spectral Theory Vol. 5, edited by
M. S.
Birman
(
Izdat. Leningrad. Univ.
,
Leningrad
,
1971
), pp.
24
38
.
75.
M. S.
Birman
and
M. Z.
Solomyak
, “
Remarks on the spectral shift function
,”
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)
27
,
33
46
(
1972
)
M. S.
Birman
and
M. Z.
Solomyak
[
J. Sov. Math.
3
,
408
419
(
1975
) (in English)].
76.
M. S.
Birman
and
M. Z.
Solomyak
, “
Estimates of singular numbers of integral operators
,”
Russ. Math. Surv.
32
,
15
89
(
1977
)
M. S.
Birman
and
M. Z.
Solomyak
[
Usp. Mat. Nauk
32
,
17
84
(
1977
) (in Russian)].
77.
R.
Blankenbecler
,
M. L.
Goldberger
, and
B.
Simon
, “
The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians
,”
Ann. Phys.
108
,
69
78
(
1977
).
78.
G.
Borg
, “
Uniqueness theorems in the spectral theory of −y + (λ − q(x))y = 0
,” in
Proceedings of 11th Scandinavian Congress of Mathematicians
(
Johan Grundt Tanums Forlag
,
Oslo
,
1952
), pp.
276
287
.
79.
R.
Bott
and
S. S.
Chern
, “
Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections
,”
Acta Math.
114
,
71
112
(
1965
).
80.
A.
Böttcher
,
I.
Spitkovsky
, and
B.
Simon
, “
Similarity between two projections
,”
Integr. Equations Oper. Theory
89
,
507
518
(
2017
).
81.
J.
Bourgain
and
S.
Jitomirskaya
, “
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
,”
J. Stat. Phys.
108
,
1203
1218
(
2002
).
82.
J.
Breuer
,
E.
Ryckman
, and
B.
Simon
, “
Equality of the spectral and dynamical definitions of reflection
,”
Commun. Math. Phys.
295
,
531
550
(
2010
).
83.
J.
Breuer
and
B.
Simon
, “
Natural boundaries and spectral theory
,”
Adv. Math.
226
,
4902
4920
(
2011
).
84.
J.
Breuer
,
B.
Simon
, and
O.
Zeitouni
, “
Large deviations and sum rules for spectral theory—A pedagogical approach
,”
J. Spectrosc. Theory
8
,
1551
1581
(
2018
).
85.
J.
Breuer
,
B.
Simon
, and
O.
Zeitouni
, “
Large deviations and the Lukic conjecture
,”
Duke Math. J.
167
,
2857
2902
(
2018
).
86.
H.
Brézis
and
T.
Kato
, “
Remarks on the Schrödinger operator with singular complex potentials
,”
J. Math. Pures Appl.
58
,
137
151
(
1979
).
87.
F.
Brownell
, “
A note on Kato’s uniqueness criterion for Schrödinger operator self-adjoint extensions
,”
Pac. J. Math.
9
,
953
973
(
1959
).
88.
E.
Caliceti
,
V.
Grecchi
, and
M.
Maioli
, “
Stark resonances: Asymptotics and distributional Borel sum
,”
Commun. Math. Phys.
157
,
347
357
(
1993
).
89.
M.
Campanino
and
A.
Klein
, “
A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model
,”
Commun. Math. Phys.
104
,
227
241
(
1986
).
90.
C.
Cancelier
,
A.
Martinez
, and
T.
Ramond
, “
Quantum resonances without analyticity
,”
Asymptotic Anal.
44
,
47
74
(
2005
).
91.
T.
Carleman
, “
Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes
,”
Ark. Mat., Astron. Fys.
2B
,
1
9
(
1939
).
92.
R.
Carmona
, “
Regularity properties of Schrödinger and Dirichlet semigroups
,”
J. Funct. Anal.
33
,
259
296
(
1974
).
93.
R.
Carmona
, “
Pointwise bounds for Schrödinger eigenstates
,”
Commun. Math. Phys.
62
,
97
106
(
1978
).
94.
R.
Carmona
, “
One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types
,”
J. Funct. Anal.
51
,
229
258
(
1983
).
95.
R.
Carmona
,
A.
Klein
, and
F.
Martinelli
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
,
41
66
(
1987
).
96.
R.
Carmona
and
J.
Lacroix
,
Spectral Theory of Random Schrödinger Operators, Probability and its Applications
(
Birkhäuser Boston, Inc.
,
Boston, MA
,
1990
).
97.
R.
Carmona
,
W. C.
Masters
, and
B.
Simon
, “
Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions
,”
J. Funct. Anal.
91
,
117
142
(
1990
).
98.
R.
Carmona
and
B.
Simon
, “
Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals
,”
Commun. Math. Phys.
80
,
59
98
(
1981
).
99.
P.
Cartier
, “
Inégalités de corrélation en mécanique statistique
,”
Sémin. Bourbaki
1972/73
,
418
435
(
1974
); available at http://www.numdam.org/article/SB_1972-1973__15__242_0.pdf.
100.
K. M.
Case
, “
Orthogonal polynomials. II
,”
J. Math. Phys.
16
,
1435
1440
(
1975
).
101.
D.
Castelvecchi
, “
The mathematician who helped to reshape physics
,”
Nature
584
,
20
(
2020
).
102.
L.
Cattaneo
,
G. M.
Graf
, and
W.
Hunziker
, “
A general resonance theory based on Mourre’s inequality
,”
Ann. Inst. Henri Poincare
7
,
583
601
(
2006
).
103.
J. R.
Choksi
and
M. G.
Nadkarni
, “
Baire category in spaces of measures, unitary operators and transformations
,” in
Invariant Subspaces and Allied Topics
, edited by
H.
Helson
and
B. S.
Yadav
(
Narosa Publishing Co.
,
New Delhi
,
1990
), pp.
147
163
.
104.
J. R.
Choksi
and
M. G.
Nadkarni
, “
Genericity of certain classes of unitary and self-adjoint operators
,”
Can. Math. Bull.
41
,
137
139
(
1998
).
105.
M.
Christ
and
A.
Kiselev
, “
Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results
,”
J. Am. Math. Soc.
11
,
771
797
(
1998
).
106.
J. S.
Christiansen
,
B.
Simon
, and
M.
Zinchenko
, “
Finite gap Jacobi matrices. I. The isospectral torus
,”
Constr. Approximation
32
,
1
65
(
2010
).
107.
J. S.
Christiansen
,
B.
Simon
, and
M.
Zinchenko
, “
Finite gap Jacobi matrices. II. The Szegő class
,”
Constr. Approximation
33
,
365
403
(
2011
).
108.
J. S.
Christiansen
,
B.
Simon
, and
M.
Zinchenko
, “
Finite gap Jacobi matrices. III. Beyond the Szegő class
,”
Constr. Approximation
35
,
259
272
(
2012
).
109.
J. S.
Christiansen
,
B.
Simon
, and
M.
Zinchenko
, “
Asymptotics of Chebyshev polynomials. I. Subsets of R
,”
Invent. Math.
208
,
217
245
(
2017
).
110.
J. S.
Christiansen
,
B.
Simon
, and
M.
Zinchenko
, “
Some remarks on periodic Jacobi matrices on trees
,”
J. Math. Phys.
62
,
042101
(
2021
).
111.
V. A.
Chulaevskiĭ
, “
Perturbations of a Schrödinger operator with periodic potential
,”
Usp. Mat. Nauk
36
,
203
204
(
1981
)
V. A.
Chulaevskiĭ
[
Russ. Math.
36
,
143
144
(
1981
) (in English)].
112.
K.
Chung
and
K.
Rao
, “
Sur la théorie du potentiel avec la fonctionelle de Feynman–Kac
,”
C. R. Acad. Sci. Paris, Sér. A
290
,
629
631
(
1980
).
113.
J. M.
Combes
,
P.
Duclos
, and
R.
Seiler
, “
Kreĭn’s formula and one-dimensional multiple-well
,”
J. Funct. Anal.
52
,
257
301
(
1983
).
114.
J. M.
Combes
and
L.
Thomas
, “
Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators
,”
Commun. Math. Phys.
34
,
251
270
(
1973
).
115.
C.
Conley
and
P.
Rejto
, “
Spectral concentration. II. General theory
,” in
Perturbation Theory and its Applications in Quantum Mechanics
, edited by
C. H.
Wilcox
(
John Wiley & Sons
,
New York
,
1966
), pp.
129
143
.
116.
J. G.
Conlon
, “
A new proof of the Cwikel-Lieb-Rosenbljum bound
,”
Rocky Mt. J. Math.
15
,
117
122
(
1985
).
117.
J. M.
Cook
, “
Convergence of the Møller wave matrix
,”
J. Math. Phys.
36
,
82
87
(
1957
).
118.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Interscience Publishers
,
New York
,
1953
), Vol. I (original German version 1931).
119.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Interscience Publishers
,
New York
,
1962
), Vol. II.
120.
W.
Craig
and
B.
Simon
, “
Subharmonicity of the Lyaponov index
,”
Duke Math. J.
50
,
551
560
(
1983
).
121.
W.
Craig
and
B.
Simon
, “
Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices
,”
Commun. Math. Phys.
90
,
207
218
(
1983
).
122.
M.
Cwikel
, “
Weak type estimates for singular values and the number of bound states of Schrödinger operators
,”
Ann. Math.
106
,
93
102
(
1977
).
123.
H. L.
Cycon
, “
Resonances defined by modified dilations
,”
Helv. Phys. Acta
58
,
969
981
(
1985
).
124.
H.
Cycon
,
R.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators with Application to Quantum Mechanics and Global Geometry
(
Springer-Verlag
,
Berlin
,
1987
).
125.
B.
Dacorogna
,
Direct Methods in the Calculus of Variations
, 2nd ed. (
Springer
,
New York
,
2008
);
B.
Dacorogna
,
Direct Methods in the Calculus of Variations
, 1st ed. (
Springer
,
New York
,
1989
).
126.
D.
Damanik
, “
Schrödinger operators with dynamically defined potentials
,”
Ergodic Theory Dyn. Syst.
37
,
1681
1764
(
2017
).
127.
D.
Damanik
and
J.
Filman
,
Spectral Theory of Discrete One-Dimensional Ergodic Schrödinger Operators
(in press).
128.
D.
Damanik
and
Z.
Gan
, “
Spectral properties of limit-periodic Schrödinger operators
,”
Commun. Pure Appl. Anal.
10
,
859
871
(
2011
).
129.
D.
Damanik
,
D.
Hundertmark
, and
B.
Simon
, “
Bound states and the Szegő condition for Jacobi matrices and Schrödinger operators
,”
J. Funct. Anal.
205
,
357
379
(
2003
).
130.
D.
Damanik
,
R.
Killip
, and
B.
Simon
, “
Perturbations of orthogonal polynomials with periodic recursion coefficients
,”
Ann. Math.
171
,
1931
2010
(
2010
).
131.
D.
Damanik
and
B.
Simon
, “
Jost functions and Jost solutions for Jacobi matrices. I. A necessary and sufficient condition for Szegő asymptotics
,”
Invent. Math.
165
,
1
50
(
2006
).
132.
E. B.
Davies
, “
The twisting trick for double well Hamiltonians
,”
Commun. Math. Phys.
85
,
471
479
(
1982
).
133.
E. B.
Davies
, “
A model for absorption or decay
,”
Helv. Phys. Acta
48
,
365
382
(
1975
).
134.
E. B.
Davies
and
B.
Simon
, “
Scattering theory for systems with different spatial asymptotics on the left and right
,”
Commun. Math. Phys.
63
,
277
301
(
1978
).
135.
E. B.
Davies
and
B.
Simon
, “
Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians
,”
J. Funct. Anal.
59
,
335
395
(
1984
).
136.
E. B.
Davies
and
B.
Simon
, “
Spectral properties of the Neumann Laplacian of horns
,”
Geom. Funct. Anal.
2
,
105
117
(
1992
).
137.
P. A.
Deift
, “
Applications of a commutation formula
,”
Duke Math. J.
45
,
267
310
(
1978
).
138.
P. A.
Deift
,
Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
, Courant Lecture Notes in Mathematics Vol. 3 (
Courant Institute of Mathematical Sciences, New York University
,
New York
,
1999
).
139.
P.
Deift
,
W.
Hunziker
,
B.
Simon
, and
E.
Vock
, “
Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. IV
,”
Commun. Math. Phys.
64
,
1
34
(
1978/79
).
140.
P.
Deift
and
R.
Killip
, “
On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials
,”
Commun. Math. Phys.
203
,
341
347
(
1999
).
141.
P.
Deift
and
B.
Simon
, “
On the decoupling of the finite singularities from the question of asymptotic completeness in two body quantum systems
,”
J. Funct. Anal.
23
,
218
238
(
1976
).
142.
P.
Deift
and
B.
Simon
, “
A time-dependent approach to the completeness of multiparticle quantum systems
,”
Commun. Pure Appl. Math.
30
,
573
583
(
1977
).
143.
P.
Deift
and
B.
Simon
, “
Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension
,”
Commun. Math. Phys.
90
,
389
411
(
1983
).
144.
R.
del Río
, “
A forbidden set for embedded eigenvalues
,”
Proc. Am. Math. Soc.
121
,
77
82
(
1994
).
145.
R.
del-Rio
,
F.
Gesztesy
, and
B.
Simon
, “
Inverse spectral analysis with partial information on the potential. III. Updating boundary conditions
,”
Int. Math. Res. Not.
1997
,
751
758
.
146.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
What is localization?
,”
Phys. Rev. Lett.
75
,
117
119
(
1995
).
147.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization
,”
J. Anal. Math.
69
,
153
200
(
1996
).
148.
R.
del Rio
,
S.
Jitomirskaya
,
N.
Makarov
, and
B.
Simon
, “
Singular continuous spectrum is generic
,”
Bull. Am. Math. Soc.
31
,
208
212
(
1994
).
149.
R.
del Rio
,
N.
Makarov
, and
B.
Simon
, “
Operators with singular continuous spectrum. II. Rank one operators
,”
Commun. Math. Phys.
165
,
59
67
(
1994
).
150.
F.
Delyon
, “
Appearance of a purely singular continuous spectrum in a class of random Schrödinger operators
,”
J. Stat. Phys.
40
,
621
630
(
1985
).
151.
F.
Delyon
,
H.
Kunz
, and
B.
Souillard
, “
One dimensional wave equations in disordered media
,”
J. Phys. A: Math. Gen.
16
,
25
42
(
1983
).
152.
F.
Delyon
,
Y.-E.
Lévy
, and
B.
Souillard
, “
An approach à la Borland to multidimensional Anderson localization
,”
Phys. Rev. Lett.
55
,
618
621
(
1985
).
153.
F.
Delyon
,
Y.
Lévy
, and
B.
Souillard
, “
Anderson localization for multi-dimensional systems at large disorder or large energy
,”
Commun. Math. Phys.
100
,
463
470
(
1985
).
154.
F.
Delyon
,
Y.
Lévy
, and
B.
Souillard
, “
Anderson localization for one- and quasi one-dimensional systems
,”
J. Stat. Phys.
41
,
375
388
(
1985
).
155.
F.
Delyon
,
B.
Simon
, and
B.
Souillard
, “
From power localized to extended states in a class of one-dimensional disordered systems
,”
Phys. Rev. Lett.
52
,
2187
2189
(
1984
).
156.
F.
Delyon
,
B.
Simon
, and
B.
Souillard
, “
From power pure point to continuous spectrum in disordered systems
,”
Ann. Inst. Henri Poincare
42
,
283
309
(
1985
); available at http://www.numdam.org/item/AIHPA_1985__42_3_283_0/.
157.
F.
Delyon
,
B.
Simon
, and
B.
Souillard
, “
Localization for off-diagonal disorder and for continuous Schrödinger operators
,”
Commun. Math. Phys.
109
,
157
165
(
1987
).
158.
F.
Delyon
and
B.
Souillard
, “
The rotation number for finite difference operators and its properties
,”
Commun. Math. Phys.
89
,
415
426
(
1983
).
159.
F.
Delyon
and
B.
Souillard
, “
Remark on the continuity of the density of states of ergodic finite difference operators
,”
Commun. Math. Phys.
94
,
289
291
(
1984
).
160.
S. A.
Denisov
, “
On the coexistence of absolutely continuous and singular continuous components of the spectral measure for some Sturm-Liouville operators with square summable potential
,”
J. Differ. Equations
191
,
90
104
(
2003
).
161.
J.
Derezinski
, “
Asymptotic completeness of long–range N–body quantum systems
,”
Ann. Math.
138
,
427
476
(
1993
).
162.
R. L.
Dobrushin
, “
Gibbsian random fields for lattice systems with pairwise interactions
,”
Funct. Anal. Appl.
2
,
292
301
(
1968
).
163.
R. L.
Dobrushin
, “
The description of a random field by means of conditional probabilities and conditions of its regularity
,”
Theory Probab. Appl.
13
,
197
224
(
1968
).
164.
R. L.
Dobrushin
and
E. A.
Pecherski
,
Uniqueness Conditions for Finitely Dependent Random Fields, Random Fields
(
Esztergom
,
1979
), Vols. I and II, pp.
223
261
.
165.
J. D.
Dollard
, “
Asymptotic convergence and the Coulomb interaction
,”
J. Math. Phys.
5
,
729
738
(
1964
).
166.
J.
Dombrowski
, “
Quasitriangular matrices
,”
Proc. Am. Math. Soc.
69
,
95
96
(
1978
).
167.
W. F.
Donoghue
, Jr.
, “
On the perturbation of spectra
,”
Commun. Pure Appl. Math.
18
,
559
579
(
1965
).
168.
B. A.
Dubrovin
,
V. B.
Matveev
, and
S. P.
Novikov
, “
Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties
,”
Usp. Mat. Nauk
31
,
55
136
(
1976
).
169.
F.
Dunlop
and
C. M.
Newman
, “
Multicomponent field theories and classical rotators
,”
Commun. Math. Phys.
44
,
223
235
(
1975
).
170.
S.
Dyatlov
and
M.
Zworski
,
Mathematical Theory of Scattering Resonances
(
American Mathematical Society
,
Providence
,
2019
).
171.
F. J.
Dyson
, “
Divergence of perturbation theory in quantum electrodynamics
,”
Phys. Rev.
85
,
631
632
(
1952
).
172.
F. J.
Dyson
, “
Statistical theory of the energy levels of complex systems. I
,”
J. Math. Phys.
3
,
140
156
(
1962
).
173.
F. J.
Dyson
, “
Existence of a phase transition in a one-dimensional Ising ferromagnet
,”
Commun. Math. Phys.
12
,
91
107
(
1969
).
174.
F. J.
Dyson
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions in the quantum Heisenberg model
,”
Phys. Rev. Lett.
37
,
120
123
(
1976
).
175.
F. J.
Dyson
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions
,”
J. Stat. Phys.
18
,
335
383
(
1978
).
176.
J.-P.
Eckmann
,
J.
Magnen
, and
R.
Sénéor
, “
Decay properties and Borel summability for the Schwinger functions in P(φ)2 theories
,”
Commun. Math. Phys.
39
,
251
271
(
1975
).
177.
E. G.
Effros
, “
Why the circle is connected: An introduction to quantized topology
,”
Math. Intell.
11
,
27
34
(
1989
).
178.
R. S.
Ellis
,
J. L.
Monroe
, and
C. M.
Newman
, “
The GHS and other correlation inequalities for a class of even ferromagnets
,”
Commun. Math. Phys.
46
,
167
182
(
1976
).
179.
V.
Enss
, “
A note on Hunziker’s theorem
,”
Commun. Math. Phys.
52
,
233
238
(
1977
).
180.
V.
Enss
, “
Asymptotic completeness for quantum mechanical potential scattering
,”
Commun. Math. Phys.
61
,
258
291
(
1978
).
181.
V.
Enss
and
B.
Simon
, “
Bounds on total cross-sections in atom-atom and atom-ion collisions by geometric methods
,”
Phys. Rev. Lett.
44
,
319
321
(
1980
).
182.
V.
Enss
and
B.
Simon
, “
Finite total cross-sections in non-relativistic quantum mechanics
,”
Commun. Math. Phys.
76
,
177
210
(
1980
).
183.
P. S.
Epstein
, “
Zur theorie des starkeffektes
,”
Ann. Phys.
50
,
489
520
(
1916
).
184.
P. S.
Epstein
, “
The Stark effect from the point of view of Schroedinger’s quantum theory
,”
Phys. Rev.
28
,
695
710
(
1926
).
185.
A.
Eremenko
and
A.
Gabrielov
, “
Analytic continuation of eigenvalues of a quartic oscillator
,”
Commun. Math. Phys.
287
,
431
457
(
2009
).
186.
W. D.
Evans
and
D. J.
Harris
, “
Sobolev embeddings for generalised ridge domains
,”
Proc. London Math. Soc.
s3-54
,
141
175
(
1987
).
187.
L. D.
Faddeev
, “
Mathematical questions in the quantum theory of scattering for a system of three particles
,” Tr. Mat. Inst. Steklova
69
,
1
122
(
1963
) [
L.
Meroz
,
Israel Program for Scientific Translations Jerusalem
(
Daniel Davey & Co., Inc.
,
New York
,
1965
) (in English)].
188.
K.
Falconer
,
Fractal Geometry, Mathematical Foundations and Applications
, 3rd ed. (
John Wiley & Sons, Ltd.
,
Chichester
,
2014
);
K.
Falconer
,
Fractal Geometry, Mathematical Foundations and Applications
, 1st ed. (
John Wiley & Sons, Ltd.
,
Chichester
,
1990
).
189.
P.
Federbush
, “
A partially alternate derivation of a result of Nelson
,”
J. Math. Phys.
10
,
50
52
(
1969
).
190.
C. L.
Fefferman
, “
The uncertainty principle
,”
Bull. Am. Math. Soc.
9
,
129
206
(
1983
).
191.
C. L.
Fefferman
and
L. A.
Seco
, “
On the energy of a large atom
,”
Bull. Am. Math. Soc.
23
,
525
530
(
1990
).
192.
E.
Fermi
, “
Un metodo statistico per la determinazione di alcune proprietà dell’atomo
,”
Rend. Accad. Naz. Lincei
6
,
602
607
(
1927
).
193.
A.
Figotin
and
L.
Pastur
, “
An exactly solvable model of a multidimensional incommensurate structure
,”
Commun. Math. Phys.
95
,
410
425
(
1984
).
194.
S.
Fishman
,
D. R.
Grempel
, and
R. E.
Prange
, “
Chaos, quantum recurrences, and Anderson localization
,”
Phys. Rev. Lett.
49
,
509
512
(
1982
).
195.
S.
Fishman
,
D. R.
Grempel
, and
R. E.
Prange
, “
Localization in a d-dimensional incommensurate structure
,”
Phys. Rev. B
29
,
4272
4276
(
1984
).
196.
C. M.
Fortuin
,
P. W.
Kasteleyn
, and
J.
Ginibre
, “
Correlation inequalities on some partially ordered sets
,”
Commun. Math. Phys.
22
,
89
103
(
1971
).
197.
R.
Frank
, “
Cwikel’s theorem and the CLR inequality
,”
J. Spectrosc. Theory
4
,
1
21
(
2014
).
198.
R. L.
Frank
, “
The Lieb-Thirring inequalities: Recent results and open problems
,” in
Nine Mahematical Challenges: An Elucidation
, edited by
A.
Kechris
,
N.
Makarov
,
D.
Ramakrishnan
, and
X.
Zhu
(
American Mathematical Society
,
Providence, RI
,
2015
); arXiv:2007.09326.
199.
R. L.
Frank
,
D.
Gontier
, and
M.
Lewin
, “
The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
,”
Comm. Math. Phys.
384
,
1783
1828
(
2021
).
200.
R. L.
Frank
,
K.
Merz
,
H.
Siedentop
, and
B.
Simon
, “
Proof of the strong Scott conjecture for chandrasekhar atoms
,”
Pure Appl. Funct. Anal.
5
,
1319
1356
(
2020
).
201.
R. L.
Frank
,
A.
Laptev
, and
T.
Weidl
,
Lieb–Thirring Inequalities
(unpublished).
202.
R. L.
Frank
and
B.
Simon
, “
Critical Lieb-Thirring bounds in gaps and the generalized Nevai conjecture for finite gap Jacobi matrices
,”
Duke Math. J.
157
,
461
493
(
2011
).
203.
R.
Frank
and
B.
Simon
, “
Eigenvalue bounds for Schrödinger operators with complex potentials. II
,”
J. Spectrosc. Theory
7
,
633
658
(
2017
).
204.
R. L.
Frank
,
B.
Simon
, and
T.
Weidl
, “
Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states
,”
Commun. Math. Phys.
282
,
199
208
(
2008
).
205.
G.
Freud
,
Orthogonal Polynomials
(
Pergamon Press
,
Oxford, NY
,
1971
).
206.
K. O.
Friedrichs
, “
On the perturbation of continuous spectra
,”
Commun. Pure Appl. Math.
1
,
361
406
(
1948
).
207.
R.
Froese
and
I.
Herbst
, “
A new proof of the Mourre estimate
,”
Duke Math. J.
49
,
1075
1085
(
1982
).
208.
R.
Froese
and
I.
Herbst
, “
Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators
,”
Commun. Math. Phys.
87
,
429
447
(
1982
).
209.
J.
Fröhlich
, “
On the triviality of λφd4 theories and the approach to the critical point in d ≥ 4 dimensions
,”
Nucl. Phys. B
200
,
281
296
(
1982
).
210.
J.
Fröhlich
,
R.
Israel
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions and reflection positivity. I. General theory and long range interactions
,”
Commun. Math. Phys.
62
,
1
34
(
1978
).
211.
J.
Fröhlich
,
R.
Israel
,
E.
Lieb
, and
B.
Simon
, “
Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions
,”
J. Stat. Phys.
22
,
297
341
(
1980
).
212.
J.
Fröhlich
and
E. H.
Lieb
, “
Phase transitions in anisotropic lattice spin systems
,”
Commun. Math. Phys.
60
,
233
267
(
1978
).
213.
J.
Fröhlich
and
B.
Simon
, “
Pure states for general P(φ)2 theories: Construction, regularity and variational equality
,”
Ann. Math.
105
,
493
526
(
1977
).
214.
J.
Fröhlich
,
B.
Simon
, and
T.
Spencer
, “
Phase transitions and continuous symmetry breaking
,”
Phys. Rev. Lett.
36
,
804
806
(
1976
).
215.
J.
Fröhlich
,
B.
Simon
, and
T.
Spencer
, “
Infrared bounds, phase transitions and continuous symmetry breaking
,”
Commun. Math. Phys.
50
,
79
85
(
1976
).
216.
J.
Fröhlich
and
T.
Spencer
, “
The phase transition in the one-dimensional Ising model with 1/r2 interaction energy
,”
Commun. Math. Phys.
84
,
87
101
(
1982
).
217.
J.
Fröhlich
and
T.
Spencer
, “
Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,”
Commun. Math. Phys.
88
,
151
184
(
1983
).
218.
J.
Fröhlich
and
T.
Spencer
, “
A rigorous approach to Anderson localization
,”
Phys. Rep.
103
,
9
25
(
1984
).
219.
G.
Fubini
, “
Sulle metriche definite da una forme Hermitiana
,”
Atti R. Ist. Veneto Sci., Lett. Arti
63
,
502
513
(
1904
).
220.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
, Graduate Texts in Mathematics Vol. 129 (
Springer-Verlag
,
New York
,
1991
).
221.
H.
Furstenberg
, “
Noncommuting random products
,”
Trans. Am. Math. Soc.
108
,
377
428
(
1963
).
222.
F.
Gamboa
,
J.
Nagel
, and
A.
Rouault
, “
Sum rules via large deviations
,”
J. Funct. Anal.
270
,
509
559
(
2016
).
223.
L.
Gårding
, “
On the essential spectrum of Schrödinger operators
,”
J. Funct. Anal.
52
,
1
10
(
1983
).
224.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
, “
Korteweg-deVries equation and generalizations. VI. Methods for exact solution
,”
Commun. Pure Appl. Math.
27
,
97
133
(
1974
).
225.
L.
Garrigue
, “
Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem
,”
21
,
27
(
2018
);
L.
Garrigue
, “
Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II: The Pauli Hamiltonian
,”
Doc. Math.
25
,
869
898
(
2020
).
226.
V.
Georgescu
and
A.
Iftimovici
, “
Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians
,”
Commun. Math. Phys.
228
,
519
560
(
2002
).
227.
I. M.
Gel’fand
and
B. M.
Levitan
, “
On the determination of a differential equation from its spectral function
,”
Izv. Akad. Nauk SSR, Ser. Mat.
15
,
309
360
(
1951
)
I. M.
Gel’fand
and
B. M.
Levitan
[
Am. Math. Soc.Transl. Ser. 2
1
,
253
304
(
1955
) (in English)].
228.
C.
Gérard
, “
Distortion analyticity for N-particle Hamiltonians
,”
Helv. Phys. Acta
66
,
216
225
(
1993
).
229.
C.
Gérard
and
I. M.
Sigal
, “
Time-space picture of resonance
,”
Commun. Math. Phys.
145
,
281
328
(
1992
).
230.
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday 2 Volumes
, Symposia in Pure Mathematics Vol. 76, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
American Mathematical Society
,
Providence, RI
,
2007
).
231.
F.
Gesztesy
,
H.
Holden
, and
B.
Simon
, “
Absolute summability of the trace relation for certain Schrödinger operators
,”
Commun. Math. Phys.
168
,
137
161
(
1995
).
232.
F.
Gesztesy
,
H.
Holden
,
B.
Simon
, and
Z.
Zhao
, “
Higher order trace relations for Schrödinger operators
,”
Rev. Math. Phys.
07
,
893
922
(
1995
).
233.
F.
Gesztesy
,
H.
Holden
,
B.
Simon
, and
Z.
Zhao
, “
A trace formula for multidimensional Schrödinger operators
,”
J. Funct. Anal.
141
,
449
465
(
1996
).
234.
F.
Gesztesy
and
A.
Sakhnovich
, “
The inverse approach to Dirac-type systems based on the A-function concept
,”
J. Funct. Anal.
279
,
108609
(
2020
).
235.
F.
Gesztesy
and
B.
Simon
, “
Rank one perturbations at infinite coupling
,”
J. Funct. Anal.
128
,
245
252
(
1995
).
236.
F.
Gesztesy
and
B.
Simon
, “
The xi function
,”
Acta Math.
176
,
49
71
(
1996
).
237.
F.
Gesztesy
and
B.
Simon
, “
Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators
,”
Trans. Am. Math. Soc.
348
,
349
373
(
1996
).
238.
F.
Gesztesy
and
B.
Simon
, “
Inverse spectral analysis with partial information on the potential. I. The case of an A.C. component in the spectrum
,”
Helv. Phys. Acta
70
,
66
71
(
1997
).
239.
F.
Gesztesy
and
B.
Simon
, “
Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum
,”
Trans. Am. Math. Soc.
352
,
2765
2787
(
2000
).
240.
F.
Gesztesy
and
B.
Simon
, “
m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices
,”
J. Anal. Math.
73
,
267
297
(
1997
).
241.
F.
Gesztesy
and
B.
Simon
, “
On the determination of a potential from three spectra
,” in
Differential Operators and Spectral Theory: M. Sh. Birman’s 70th Anniversary Collection
, edited by
V.
Buslaev
,
M.
Solomyak
, and
D.
Yafaev
(
American Mathematical Society
,
Providence, RI
,
1999
) [Am. Math. Soc. Transl.
189
(
2
),
85
92
(
1999
)].
242.
F.
Gesztesy
and
B.
Simon
, “
A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure
,”
Ann. Math.
152
,
593
643
(
2000
).
243.
F.
Gesztesy
and
B.
Simon
, “
On local Borg-Marchenko uniqueness results
,”
Commun. Math. Phys.
211
,
273
287
(
2000
).
244.
F.
Gesztesy
and
B.
Simon
, “
Connectedness of the isospectral manifold for one-dimensional half-line Schrödinger operators
,”
J. Stat. Phys.
116
,
361
365
(
2004
).
245.
E.
Getzler
, “
A short proof of the Atiyah-Singer index theorems
,”
Topology
25
,
111
117
(
1986
).
246.
D. J.
Gilbert
, “
On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
112
,
213
229
(
1989
).
247.
D. J.
Gilbert
and
D. B.
Pearson
, “
On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators
,”
J. Math. Anal. Appl.
128
,
30
56
(
1987
).
248.
J.
Ginibre
, “
Existence of phase transitions for quantum lattice systems
,”
Commun. Math. Phys.
14
,
205
234
(
1969
).
249.
J.
Ginibre
, “
General formulation of Griffths’ inequalities
,”
Commun. Math. Phys.
16
,
310
328
(
1970
).
250.
J.
Glimm
, “
Boson fields with nonlinear self-interaction in two dimensions
,”
Commun. Math. Phys.
8
,
12
25
(
1968
).
251.
J.
Glimm
and
A.
Jaffe
, “
A λφ4 quantum field without cutoffs, I
,”
Phys. Rev.
176
(
2
),
1945
1951
(
1968
).
252.
J.
Glimm
and
A.
Jaffe
, “
The λ(φ4)2 quantum field theory without cutoffs. III. The physical vacuum
,”
Acta Math.
125
,
203
261
(
1970
).
253.
J.
Glimm
and
A.
Jaffe
, “
The λ(φ4)2 quantum field theory without cutoffs. IV. Perturbations of the Hamiltonian
,”
J. Math. Phys.
13
,
1568
1584
(
1972
).
254.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics. A Functional Integral Point of View
(
Springer-Verlag
,
Berlin, NY
,
1981
).
255.
J.
Glimm
,
A.
Jaffe
, and
T.
Spencer
, “
The Wightman axioms and particle structure in P(φ)2
,”
Ann. Math.
100
,
585
632
(
1974
).
256.
J.
Glimm
,
A.
Jaffe
, and
T.
Spencer
, “
Phase transitions for φ24 quantum fields
,”
Commun. Math. Phys.
45
,
203
216
(
1975
).
257.
V.
Glaser
,
H.
Grosse
, and
A.
Martin
, “
Bounds on the number of eigenvalues of the Schrödinger operator
,”
Commun. Math. Phys.
59
,
197
212
(
1978
).
258.
I. C.
Goh’berg
and
M. G.
Krein
,
Introduction to the Theory of Linear Nonselfadjoint Operators
, Translations of Mathematical Monographs (
American Mathematical Society
,
Providence, RI
,
1969
).
259.
I.
Ja Goldsheid
,
S. A.
Molcanov
, and
L. A.
Pastur
, “
A pure point spectrum of the stochastic one dimensional Schrödinger operator
,”
Funct. Anal. Appl.
11
,
1
10
(
1977
).
260.
A. Ya.
Gordon
, “
On the point spectrum of the one-dimensional Schrödinger operators
,”
Usp. Math. Nauk
31
,
257
258
(
1976
).
261.
A. Ya.
Gordon
, “
On exceptional values of the boundary phase for the Schrödinger equation of a half-line
,”
Usp. Math. Nauk
47
,
211
212
(
1992
)
A. Ya.
Gordon
[
Russ. Math. Surv.
47
,
260
261
(
1992
) (in English)].
262.
A. Y.
Gordon
, “
Pure point spectrum under 1-parameter perturbations and instability of Anderson localization
,”
Commun. Math. Phys.
164
,
489
505
(
1994
).
263.
Y. A.
Gordon
,
V.
Jakšić
,
S.
Molčanov
, and
B.
Simon
, “
Spectral properties of random Schrödinger operators with unbounded potentials
,”
Commun. Math. Phys.
157
,
23
50
(
1993
).
264.
A. Y.
Gordon
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
Duality and singular continuous spectrum in the almost Mathieu equation
,”
Acta Math.
178
,
169
183
(
1997
).
265.
A. Y.
Gordon
,
S. A.
Molžanov
, and
B.
Tsagani
, “
Spectral theory of one-dimensional Schrödinger operators with strongly fluctuating potential
,”
Funct. Anal. Appl.
25
,
236
238
(
1991
).
266.
G. M.
Graf
, “
Asymptotic completeness for N-body short-range quantum systems: A new proof
,”
Commun. Math. Phys.
132
,
73
101
(
1990
).
267.
S.
Graffi
and
V.
Grecchi
, “
On a relation between Stieltjes and Borel summabilities
,”
J. Math. Phys.
19
,
1002
1007
(
1978
).
268.
S.
Graffi
and
V.
Grecchi
, “
Resonances in Stark effect and perturbation theory
,”
Commun. Math. Phys.
62
,
83
96
(
1978
).
269.
S.
Graffi
and
V.
Grecchi
, “
Existence and Borel summability of resonances in hydrogen Stark effect
,”
Lett. Math. Phys.
3
,
336
340
(
1978
).
270.
S.
Graffi
and
V.
Grecchi
, “
Confinement of the resonances in hydrogen Stark effect
,”
J. Phys. B At., Mol. Opt. Phys.
12
,
L265
L267
(
1979
).
271.
S.
Graffi
and
V.
Grecchi
, “
Resonances in the Stark effect of atomic systems
,”
Commun. Math. Phys.
79
,
91
109
(
1981
).
272.
S.
Graffi
,
V.
Grecchi
,
S.
Levoni
, and
M.
Maioli
, “
Resonances in one-dimensional Stark effect and continued fractions
,”
J. Math. Phys.
20
,
685
690
(
1979
).
273.
S.
Graffi
,
V.
Grecchi
, and
B.
Simon
, “
Borel summability: Application to the anharmonic oscillator
,”
Phys. Lett. D
32
,
631
634
(
1970
).
274.
S.
Graffi
,
V.
Grecchi
, and
B.
Simon
, “
Complete separability of the Stark effect in hydrogen
,”
J. Phys. B: At. Mol. Phys.
12
,
L193
L195
(
1979
).
275.
D. R.
Grempel
,
S.
Fishman
, and
R. E.
Prange
, “
Localization in an incommensurate potential: An exactly solvable model
,”
Phys. Rev. Lett.
49
,
833
836
(
1982
).
276.
R. B.
Griffiths
, “
Correlations in Ising ferromagnets. I
,”
J. Math. Phys.
8
,
478
483
(
1967
).
277.
R. B.
Griffiths
, “
Correlations in Ising ferromagnets. II. External magnetic fields
,”
J. Math. Phys.
8
,
484
489
(
1967
).
278.
R. B.
Griffiths
, “
Correlations in Ising ferromagnets. III
,”
Commun. Math. Phys.
6
,
121
127
(
1967
).
279.
R. B.
Griffiths
, “
Rigorous results for Ising ferromagnets of arbitrary spin
,”
J. Math. Phys.
10
,
1559
1565
(
1969
).
280.
R. B.
Griffiths
,
C. A.
Hurst
, and
S.
Sherman
, “
Concavity of magnetization of an Ising ferromagnet in a positive external field
,”
J. Math. Phys.
11
,
790
795
(
1970
).
281.
R.
Griffiths
and
B.
Simon
, “
Griffiths-Hurst-Sherman inequalities and a Lee-Yang theorem for the (ϕ4)2 field theory
,”
Phys. Rev. Lett.
30
,
931
933
(
1973
).
282.
R.
Griffiths
and
B.
Simon
, “
The (φ4)2 field theory as a classical Ising model
,”
Commun. Math. Phys.
33
,
145
164
(
1973
).
283.
L.
Gross
, “
Logarithmic Sobolev inequalities
,”
Am. J. Math.
97
,
1061
1083
(
1975
).
284.
H.
Grosse
and
J.
Stubbe
, “
Splitting of Landau levels in the presence of external potentials
,”
Lett. Math. Phys.
34
,
59
68
(
1995
).
285.
A.
Grossman
and
T. T.
Wu
, “
Schrödinger scattering amplitude. I
,”
J. Math. Phys.
2
,
710
713
(
1961
);
A.
Grossman
and
T. T.
Wu
,
Schrödinger scattering amplitude. III
,”
J. Math. Phys.
3
,
684
689
(
1962
).
286.
F.
Guerra
, “
Uniqueness of the vacuum energy density and Van Hove phenomenon in the infinite volume limit for two-dimensional self-coupled bose fields
,”
Phys. Rev. Lett.
28
,
1213
1215
(
1972
).
287.
F.
Guerra
, “
Exponential bounds in lattice field theory
,” in
Les Méthodes Mathématiques de la Théorie Quantique des Champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975)
(
Centre National de la Recherche Scientifique
,
Paris
,
1976
), pp.
185
205
.
288.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
, “
Nelson’s Symmetry and the infinite volume behaviour of the vacuum in P(φ)2
,”
Commun. Math. Phys.
27
,
10
22
(
1972
).
289.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
, “
The vacuum energy for P(φ)2: Infinite volume limit and coupling constant dependence
,”
Commun. Math. Phys.
29
,
233
247
(
1973
).
290.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
, “
Statistical mechanical results in the P(φ)2 quantum field theory
,”
Phys. Lett. B
44
,
102
104
(
1973
).
291.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
, “
The P(φ)2 Euclidean quantum field theory as classical statistical mechanics
,”
Ann. Math.
101
,
111
189
(
1975
).
292.
F.
Guerra
,
L.
Rosen
, and
B.
Simon
, “
Correlation inequalities and the mass gap in P(φ)2. III. Mass gap for a class of strongly coupled theories with nonzero external field
,”
Commun. Math. Phys.
41
,
19
32
(
1975
).
293.
M. N.
Hack
, “
On the convergence to the Møller wave operators
,”
Nuovo Cimento
9
,
731
733
(
1958
).
294.
M. N.
Hack
, “
Wave operators in multichannel scattering
,”
Nuovo Cimento X
13
,
231
236
(
1959
).
295.
B.
Halperin
, “
Properties of a particle in a one-dimensional random potential
,”
Adv. Chem. Phys.
31
,
123
177
(
1967
).
296.
G. H.
Hardy
,
Divergent Series
(
Oxford University Press
,
London; New York
,
1949
).
297.
E.
Harrell
and
B.
Simon
, “
The mathematical theory of resonances whose widths are exponentially small
,”
Duke Math. J.
47
,
845
902
(
1980
).
298.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
Cambridge
,
2002
).
299.
B.
Helffer
and
A.
Mohamed
, “
Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique
,”
Ann. Inst. Fourier
38
,
95
112
(
1988
).
300.
B.
Helffer
and
D.
Robert
, “
Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques
,”
Ann. Inst. Fourier
31
,
169
223
(
1981
); available at http://www.numdam.org/item/?id=AIF_1981__31_3_169_0.
301.
B.
Helffer
and
J.
Sjöstrand
, “
Multiple wells in the semiclassical limit. I
,”
Commun. Partial Differ. Equations
9
,
337
408
(
1984
).
302.
B.
Helffer
and
J.
Sjöstrand
, “
Résonances en limite semi–classique [Resonances in the semiclassical limit]
,”
Mém. Soc. Math. France (N.S.)
(in press).
303.
L.
Helms
,
Potential Theory
, Universitext (
Springer-Verlag
,
London
,
2009
).
304.
R.
Hempel
,
I.
Herbst
,
A. M.
Hinz
, and
H.
Kalf
, “
Intervals of dense point spectrum for spherically symmetric Schrödinger operators of the type −Δ + cos |x|
,”
J. London Math. Soc.
s2-43
,
295
304
(
1991
).
305.
R.
Hempel
,
L. A.
Seco
, and
B.
Simon
, “
The essential spectrum of Neumann Laplacians on some bounded singular domains
,”
J. Funct. Anal.
102
,
448
483
(
1991
).
306.
D. C.
Herbert
and
R.
Jones
, “
Localized states in disordered systems
,”
J. Phys. C: Solid State Phys.
4
,
1145
1161
(
1971
).
307.
I. W.
Herbst
, “
Unitary equivalence of Stark Hamiltonians
,”
Math. Z.
155
,
55
71
(
1977
).
308.
I. W.
Herbst
, “
Dilation analyticity in constant electric field. I: The two body problem
,”
Commun. Math. Phys.
64
,
279
298
(
1979
).
309.
I.
Herbst
,
J. S.
Møller
, and
E.
Skibsted
, “
Spectral analysis of N–body Stark Hamiltonians
,”
Commun. Math. Phys.
174
,
261
294
(
1995
).
310.
I. W.
Herbst
and
B.
Simon
, “
Some remarkable examples in eigenvalue perturbation theory
,”
Phys. Lett. B
78
,
304
306
(
1978
).
311.
I. W.
Herbst
and
B.
Simon
, “
Dilation analyticity in constant electric field. II: The N-body problem, Borel summability
,”
Commun. Math. Phys.
80
,
181
216
(
1981
).
312.
M. R.
Herman
, “
Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2
,”
Commun. Math. Helv.
58
,
453
502
(
1983
).
313.
H.
Hess
,
R.
Schrader
, and
D. A.
Uhlenbrock
, “
Domination of semigroups and generalization of Kato’s inequality
,”
Duke Math. J.
44
,
893
904
(
1977
).
314.
E.
Hille
, “
Some aspects of the Thomas-Fermi equation
,”
J. Anal. Math.
23
,
147
170
(
1970
).
315.
H.
Hochstadt
and
B.
Lieberman
, “
An inverse Sturm-Liouville problem with mixed given data
,”
SIAM J. Appl. Math.
34
,
676
680
(
1978
).
316.
A.
Hof
,
O.
Knill
, and
B.
Simon
, “
Singular continuous spectrum for palindromic Schrödinger operators
,”
Commun. Math. Phys.
174
,
149
159
(
1995
).
317.
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
B.
Simon
, “
A multiparticle Coulomb system with bound state at threshold
,”
J. Phys. A: Math. Gen.
16
,
1125
1131
(
1983
).
318.
D. R.
Hofstadter
, “
Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
,
2239
2249
(
1976
).
319.
D. R.
Hofstadter
,
Gödel, Escher, Bach: An Eternal Golden Braid
(
Basic Books
,
1979
).
320.
P. C.
Hohenberg
, “
Existence of long-range order in one and two dimensions
,”
Phys. Rev.
158
,
383
386
(
1967
).
321.
J. S.
Howland
, “
Spectral concentration and virtual poles
,”
Am. J. Math.
91
,
1106
1126
(
1969
).
322.
J. S.
Howland
, “
Embedded eigenvalues and virtual poles
,”
Pac. J. Math.
29
,
565
582
(
1969
).
323.
J. S.
Howland
, “
Spectral concentration and virtual poles. II
,”
Trans. Am. Math. Soc.
162
,
141
156
(
1971
).
324.
J. S.
Howland
, “
Perturbation of embedded eigenvalues
,”
Bull. Am. Math. Soc.
78
,
280
283
(
1972
).
325.
J.
Howland
, “
Puiseux series for resonances at an embedded eigenvalue
,”
Pac. J. Math.
55
,
157
176
(
1974
).
326.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
327.
W.
Hughes
, “
An atomic lower bound that agrees with Scott’s correction
,”
Adv. Math.
79
,
213
270
(
1990
).
328.
D.
Hundertmark
, “
Some bound state problems in quantum mechanics
,” in , edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
Proceedings of Symposia in Pure Mathematics
,
2007
), Vol. 76.2.
329.
D.
Hundertmark
,
P.
Kunstmann
,
T.
Ried
, and
S.
Vugalter
, “
Cwikel’s bound reloaded
,” arXiv:1809.05069.
330.
D.
Hundertmark
,
E. H.
Lieb
, and
L. E.
Thomas
, “
A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator
,”
Adv. Theor. Math. Phys.
2
,
719
731
(
1998
).
331.
D.
Hundertmark
and
B.
Simon
, “
Lieb-Thirring inequalities for Jacobi matrices
,”
J. Approximation Theory
118
,
106
130
(
2002
).
332.
D.
Hundertmark
and
B.
Simon
, “
A diamagnetic inequality for semigroup differences
,”
J. Reine Angew. Math.
571
,
107
130
(
2004
).
333.
D.
Hundertmark
and
B.
Simon
, “
Eigenvalue bounds in the gaps of Schrödinger operators and Jacobi matrices
,”
J. Math. Anal. Appl.
340
,
892
900
(
2008
).
334.
W.
Hunziker
, “
Proof of a conjecture of S. Weinberg
,”
Phys. Rev. B
135
,
800
803
(
1964
).
335.
W.
Hunziker
, “
On the spectra of Schrödinger multiparticle Hamiltonians
,”
Helv. Phys. Acta
39
,
451
462
(
1966
).
336.
W.
Hunziker
, “
Distortion analyticity and molecular resonance curves
,”
Ann. Inst. Henri Poincare, Sect. A
45
,
339
358
(
1986
); available at http://www.numdam.org/item/?id=AIHPA_1986__45_4_339_0.
337.
W.
Hunziker
and
I. M.
Sigal
, “
The quantum N-body problem
,”
J. Math. Phys.
41
,
3448
3510
(
2000
).
338.
A.
Iantchenko
,
E. H.
Lieb
, and
H.
Siedentop
, “
Proof of a conjecture about atomic and molecular cores related to Scott’s correction
,” in (
Springer, Berlin, Heidelberg,
,
1995
), pp.
127
145
.
339.
T.
Ikebe
and
T.
Kato
, “
Uniqueness of the self-adjoint extensions of singular elliptic differential operators
,”
Arch. Ration. Mech. Anal.
9
,
77
92
(
1962
).
340.
E. L.
Ince
, “
Research into the characteristic numbers of Mathieu equation
,”
Proc. R. Soc. Edinburgh
46
,
20
29
(
1927
).
341.
R. J.
Iorio
and
M.
O’Carroll
, “
Asymptotic completeness for multi-particle Schroedinger Hamiltonians with weak potentials
,”
Commun. Math. Phys.
27
,
137
145
(
1972
).
342.
K.
Ishii
, “
Localization of eigenstates and transport phenomena in one-dimensional disordered systems
,”
Prog. Theor. Phys. Suppl.
53
,
77
138
(
1973
).
343.
V. J.
Ivrii
and
I. M.
Sigal
, “
Asymptotics of the ground state energies of large Coulomb systems
,”
Ann. Math.
138
,
243
335
(
1993
).
344.
C.
Jacobi
,
Vorlesungen über Dynamik
, 1st ed. (
G. Reiner
,
Berlin
,
1866; 1884
), based on lectures given in 1842–43, published posthumously.
345.
A.
Jaffe
, “
Divergence of perturbation theory for bosons
,”
Commun. Math. Phys.
1
,
127
149
(
1965
).
346.
A.
Jaffe
and
E.
Witten
, “
Quantum Yang-Mills theory
,” in
The Millennium Prize Problems
(
Clay Mathematics Institute
,
Cambridge, MA
,
2006
), pp.
129
152
.
347.
V.
Jakšić
and
Y.
Last
, “
Spectral structure of Anderson type Hamiltonians
,”
Invent. Math.
141
,
561
577
(
2000
).
348.
V.
Jakšić
and
Y.
Last
, “
Simplicity of singular spectrum in Anderson-type Hamiltonians
,”
Duke Math. J.
133
,
185
204
(
2006
).
349.
V.
Jakšić
and
Y.
Last
, “
A new proof of Poltoratskii’s theorem
,”
J. Funct. Anal.
215
,
103
110
(
2004
).
350.
V.
Jakšić
,
S.
Molčanov
, and
B.
Simon
, “
Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps
,”
J. Funct. Anal.
106
,
59
79
(
1992
).
351.
V. A.
Javrjan
, “
A certain inverse problem for Sturm–Liouville operators
,”
Izv. Akad. Nauk SSR, Ser. Mat.
6
,
246
251
(
1971
).
352.
A.
Jensen
, “
Local distortion technique, resonances, and poles of the S-matrix
,”
J. Math. Anal. Appl.
59
,
505
513
(
1977
).
353.
A.
Jensen
and
T.
Kato
, “
Spectral properties of Schrödinger operators and time-decay of the wave functions
,”
Duke Math. J.
46
,
583
611
(
1979
).
354.
A.
Jensen
and
G.
Nenciu
, “
The Fermi golden rule and its form at thresholds in odd dimensions
,”
Commun. Math. Phys.
261
,
693
727
(
2006
).
355.
D.
Jerison
and
C. E.
Kenig
, “
Unique continuation and absence of positive eigenvalues for Schrödinger operators
,”
Ann. Math.
121
,
463
494
(
1985
).
356.
S.
Jitomirskaya
, “
Almost everything about the almost Mathieu operator. II
,” in
XIth International Congress of Mathematical Physics, Paris, 1994
(
International Press
,
Cambridge, MA
,
1995
), pp.
373
382
.
357.
S. Y.
Jitomirskaya
, “
Metal-insulator transition for the almost Mathieu operator
,”
Ann. Math.
150
,
1159
1175
(
1999
).
358.
S.
Jitomirskaya
, “
Ergodic Schrödinger operators (on one foot)
,” in , edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
Proceedings of Symposia in Pure Mathematics
,
2007
), Vol. 76.2.
359.
S.
Jitomirskaya
, “
On point spectrum of critical almost Mathieu operators
,”
Adv. Math.
392
,
107997
(
2021
).
360.
S.
Jitomirskaya1
and
I.
Krasovsky
, “
Critical almost Mathieu operator: Hidden singularity, gap continuity, and the Hausdorff dimension of the spectrum
,” arXiv:1909.04429.
361.
S.
Jitomirskaya
and
W.
Liu
, “
Universal hierarchical structure of quasiperiodic eigenfunctions
,”
Ann. Math.
187
,
721
776
(
2018
).
362.
S.
Jitomirskaya
and
W.
Liu
, “
Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” arXiv:1802.00781.
363.
S.
Jitomirskaya
and
C.
Marx
, “
Dynamics and spectral theory of quasi-periodic Schrödinger-type operators
,”
Ergodic Theory Dyn. Syst.
37
,
2353
2393
(
2017
).
364.
S.
Jitomirskaya
and
B.
Simon
, “
Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,”
Commun. Math. Phys.
165
,
201
205
(
1994
).
365.
R. A.
Johnson
, “
Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients
,”
J. Differ. Equations
61
,
54
78
(
1986
).
366.
R.
Johnson
and
J.
Moser
, “
The rotation number for almost periodic potentials
,”
Commun. Math. Phys.
84
,
403
438
(
1982
).
367.
K.
Jörgens
and
J.
Weidmann
,
Spectral Properties of Hamiltonian Operators
, Lecture Notes in Mathematics Vol. 313 (
Springer
,
Berlin; New York
,
1973
).
368.
R.
Jost
,
The General Theory of Quantized Fields
, Lectures in Applied Mathematics Vol. IV (
American Mathematical Society
,
Providence, RI
,
1965
) (Proceedings of the Summer Seminar, Boulder, Colorado, 1960).
369.
I. S.
Kac
, “
On the multiplicity of the spectrum of a second order differential operator and the associated eigenfunction expansion
,”
Izv. Akad. Nauk. SSSR, Ser. Mat.
27
,
1081
112
(
1963
)
370.
H.
Kalf
, “
The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators
,”
Isr. J. Math.
20
,
57
69
(
1975
).
371.
P. W.
Kasteleyn
and
R. J.
Boel
, “
Extremal Λ-inequalities for Ising models with pair interactions
,”
Commun. Math. Phys.
66
,
167
179
(
1979
).
372.
T.
Kato
, “
On the convergence of the perturbation method. I
,”
Prog. Theor. Phys.
4
,
514
523
(
1949
);
T.
Kato
,
On the convergence of the perturbation method. II.1
,”
Prog. Theor. Phys.
5
,
95
101
;
207
212
(
1950
);
T.
Kato
,
On the convergence of the perturbation method. II.2
,”
Prog. Theor. Phys.
5
,
207
212
(
1950
).
373.
T.
Kato
, “
On the adiabatic theorem for quantum mechanics
,”
J. Phys. Soc. Jpn.
5
,
435
439
(
1950
).
374.
T.
Kato
, “
On the convergence of the perturbation method
,”
J. Fac. Sci., Univ. Tokyo, Sect. 1
6
,
145
226
(
1951
).
375.
T.
Kato
, “
Fundamental properties of Hamiltonian operators of Schrödinger type
,”
Trans. Am. Math. Soc.
70
,
195
211
(
1951
).
376.
T.
Kato
, “
On the existence of solutions of the helium wave equation
,”
Trans. Am. Math. Soc.
70
,
212
218
(
1951
).
377.
T.
Kato
, “
Perturbation theory of semi-bounded operators
,”
Math. Ann.
125
,
435
447
(
1953
).
378.
T.
Kato
, “
On finite-dimensional perturbations of self-adjoint operators
,”
J. Math. Soc. Jpn.
9
,
239
249
(
1957
).
379.
T.
Kato
, “
Perturbation of continuous spectra by trace class operators
,”
Proc. Jpn. Acad.
33
,
260
264
(
1957
).
380.
T.
Kato
, “
Growth properties of solutions of the reduced wave equation with a variable coefficient
,”
Commun. Pure Appl. Math.
12
,
403
425
(
1959
).
381.
T.
Kato
, “
Wave operators and similarity for some non-selfadjoint operators
,”
Math. Ann.
162
,
258
279
(
1966
).
382.
T.
Kato
, “
Smooth operators and commutators
,”
Stud. Math.
31
,
535
546
(
1968
).
383.
T.
Kato
, “
Schrödinger operators with singular potentials
,”
Isr. J. Math.
13
,
135
148
(
1972
).
384.
T.
Kato
, “
A second look at the essential self-adjointness of the Schrödinger operators
,” in
Physical Reality and Mathematical Description
, edited by
C.
Enz
and
J.
Mehra
(
Reidel
,
Dordrecht
,
1974
), pp.
193
201
.
385.
T.
Kato
,
Perturbation Theory for Linear Operators
, Grundlehren der Mathematischen Wissenschaften, Band 132, 2nd ed. (
Springer
,
Berlin; New York
,
1976
) (1st ed. 1966; there is also a revised and correctd 1980 printing).
386.
T.
Kato
, “
Scattering theory and perturbation of continuous spectra
,” in
Actes du Congr és International des Math ématiciens
(
1970
), Vol. 1, pp.
135
140
.
387.
T.
Kato
, “
Remarks on Schrödinger operators with vector potentials
,”
Integr. Equations Oper. Theory
1
,
103
113
(
1978
).
388.
T.
Kato
, “
On some Schrödinger operators with a singular complex potential
,”
Ann. Sc. Norm. Super. Pisa-Cl. Sci., IV
5
,
105
114
(
1978
).
389.
T.
Kato
, “
On the Cook-Kuroda criterion in scattering theory
,”
Commun. Math. Phys.
67
,
85
90
(
1979
).
390.
T.
Kato
, “
Remarks on the selfadjointness and related problems for differential operators
,” in
Spectral Theory of Differential Operators
, Proceedings of the Conference held at the Birmingham, USA, 1981, edited by
I.
Knowles
and
R.
Lewis
(
North-Holland
,
1981
), pp.
253
266
.
391.
T.
Kato
, “
Nonselfadjoint Schrödinger operators with singular first-order coefficients
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
96
,
323
329
(
1984
).
392.
T.
Kato
, “
LP-theory of Schrödinger operators with a singular potential
,” in
Aspects of Positivity in Functional Analysis
, edited by
R.
Nagel
,
U.
Schlotterbeck
, and
M.
Wolff
(
North-Holland
,
1986
), pp.
63
78
.
393.
D. G.
Kelly
and
S.
Sherman
, “
General Griffiths’ inequalities on correlations in Ising ferromagnets
,”
J. Math. Phys.
9
,
466
484
(
1968
).
394.
T.
Kennedy
,
E. H.
Lieb
, and
B. S.
Shastry
, “
Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets
,”
J. Stat. Phys.
53
,
1019
1030
(
1988
).
395.
T.
Kennedy
and
B.
Nachtergale
, “
The Heisenberg model—A bibliography
,” available at https://www.math.ucdavis.edu/~bxn/qs.html.
396.
R.
Killip
and
B.
Simon
, “
Sum rules for Jacobi matrices and their applications to spectral theory
,”
Ann. Math.
158
,
253
321
(
2003
).
397.
A. A.
Kirillov
, “
Unitary representations of nilpotent Lie groups
,”
Russ. Math. Surv.
17
,
53
104
(
1962
).
398.
W.
Kirsch
and
B.
Metzger
, “
The integrated density of states for random Schrödinger operators
,” (published online); available at https://web.ma.utexas.edu/mp_arc/c/06/06-225.pdf.
399.
W.
Kirsch
and
B.
Simon
, “
Lifshitz tails for periodic plus random potentials
,”
J. Stat. Phys.
42
,
799
808
(
1986
).
400.
W.
Kirsch
and
B.
Simon
, “
Universal lower bounds on eigenvalue splittings for one dimensional Schrödinger operators
,”
Commun. Math. Phys.
97
,
453
460
(
1985
).
401.
W.
Kirsch
and
B.
Simon
, “
Comparison theorems for the gap of Schrödinger operators
,”
J. Funct. Anal.
75
,
396
410
(
1987
).
402.
W.
Kirsch
and
B.
Simon
, “
Corrections to the classical behavior of the number of bound states of Schrödinger operators
,”
Ann. Phys.
183
,
122
130
(
1988
).
403.
A.
Kiselev
, “
Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials
,”
Commun. Math. Phys.
179
,
377
400
(
1996
).
404.
A.
Kiselev
, “
Imbedded singular continuous spectrum for Schrödinger operators
,”
J. Am. Math. Soc.
18
,
571
603
(
2005
).
405.
A.
Kiselev
,
Y.
Last
, and
B.
Simon
, “
Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators
,”
Commun. Math. Phys.
194
,
1
45
(
1998
).
406.
A.
Kiselev
and
B.
Simon
, “
Rank one perturbations with infinitesimal coupling
,”
J. Funct. Anal.
130
,
345
356
(
1995
).
407.
M.
Klaus
, “
On the bound state of Schrödinger operators in one dimension
,”
Ann. Phys.
108
,
288
300
(
1977
).
408.
M.
Klaus
and
B.
Simon
, “
Binding of Schrödinger particles through conspiracy of potential wells
,”
Ann. Inst. Henri Poincare, Sect. A
30
,
83
87
(
1979
).
409.
M.
Klaus
and
B.
Simon
, “
Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short range two-body case
,”
Ann. Phys.
130
,
251
281
(
1980
).
410.
M.
Klaus
and
B.
Simon
, “
Coupling constant threshold in non-relativistic quantum mechanics. II. Two-cluster thresholds in N-body systems
,”
Commun. Math. Phys.
78
,
153
168
(
1980
).
411.
A.
Klein
,
L. J.
Landau
, and
D. S.
Shucker
, “
On the absence of spontaneous breakdown of continuous symmetry for equilibrium states in two dimensions
,”
J. Stat. Phys.
26
,
505
512
(
1981
).
412.
A.
Klein
and
A.
Speis
, “
Regularity of the invariant measure and of the density of states in the one-dimensional Anderson model
,”
J. Funct. Anal.
88
,
211
227
(
1990
).
413.
H.
Koch
and
D.
Tataru
, “
Carleman estimates and unique continuation for second order elliptic equations with nonsmooth coefficients
,”
Commun. Pure Appl. Math.
54
,
339
360
(
2001
).
414.
B.
Kostant
,
On the Definition of Quantization
, Géométrie Symplectique et Physique Mathématique (
CNRS
,
Paris
,
1974
).
415.
S.
Kotani
, “
Ljaponov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators
,” in
Stochastic Analysis
, edited by
K.
Ito
(
North Holland
,
Amsterdam
,
1984
), pp.
225
248
.
416.
S.
Kotani
, “
Lyapunov exponents and spectra for one-dimensional random Schrödinger operators
,” in
Random Matrices and Their Applications, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Bowdoin College, Brunswick, ME, June 17–23, 1984
, edited by
J. E.
Cohen
,
H.
Kesten
, and
C. M.
Newman
, Contemporary Mathematics Vol. 50 (
American Mathematical Society
,
Providence, RI
,
1986
), pp.
277
286
.
417.
S.
Kotani
, “
Jacobi matrices with random potentials taking finitely many values
,”
Rev. Math. Phys.
01
,
129
133
(
1989
).
418.
S.
Kotani
, “
Generalized Floquet theory for stationary Schrödinger operators in one dimension
,”
Chaos, Solitons Fractals
8
,
1817
1854
(
1997
).
419.
S.
Kotani
and
B.
Simon
, “
Localization in general one-dimensional random systems. II. Continuum Schrödinger operators
,”
Commun. Math. Phys.
112
,
103
119
(
1987
).
420.
S.
Kotani
and
B.
Simon
, “
Stochastic Schrödinger operators and Jacobi matrices on the strip
,”
Commun. Math. Phys.
119
,
403
429
(
1988
).
421.
S.
Kotani
and
N.
Ushiroya
, “
One-dimensional Schrödinger operators with random decaying potentials
,”
Commun. Math. Phys.
115
,
247
266
(
1988
).
422.
H. A.
Kramers
, “
Théorie générale de la rotation paramagnétique dans les cristaux
,”
Proc. K. Akad. Wet.
33
,
959
972
(
1930
).
423.
H.
Kunz
and
C.-E.
Pfister
, “
First order phase transition in the plane rotor ferromagnetic model in two dimensions
,”
Commun. Math. Phys.
46
,
245
251
(
1976
).
424.
H.
Kunz
,
C. E.
Pfister
, and
P. A.
Vuillermot
, “
Inequalities for some classical spin vector models
,”
J. Phys. A.: Math. Gen.
9
,
1673
1683
(
1976
).
425.
H.
Kunz
and
B.
Souillard
, “
Sur le spectre des operateurs aux differences finies aleatoires
,”
Commun. Math. Phys.
78
,
201
246
(
1980
).
426.
Analysis as a Tool in Mathematical Physics: In Memory of Boris Pavlov
, edited by
P.
Kurasov
,
A.
Laptev
,
S.
Naboko
, and
B.
Simon
(
Birkhauser
,
2020
).
427.
S. T.
Kuroda
, “
On a theorem of Weyl-von Neumann
,”
Proc. Jpn. Acad.
34
,
11
15
(
1958
).
428.
S. T.
Kuroda
, “
On the existence and the unitarity property of the scattering operator
,”
Nuovo Cimento
12
,
431
454
(
1959
).
429.
S. T.
Kuroda
, “
Perturbation of continuous spectra by unbounded operators. II
,”
J. Math. Soc. Jpn.
12
,
243
257
(
1960
).
430.
S. T.
Kuroda
, “
Scattering theory for differential operators, I, operator theory
,”
J. Math. Soc. Jpn.
25
,
75
104
(
1973
).
431.
S. T.
Kuroda
, “
Scattering theory for differential operators, II, self–adjoint elliptic operators
,”
J. Math. Soc. Jpn.
25
,
222
234
(
1973
).
432.
C.
Lanczos
, “
Zur theorie des starkeffektes in hohen feldern
,”
Z. Phys.
62
,
518
544
(
1930
);
C.
Lanczos
,
Zur verschiebung der wasserstoffterme in hohen elektrischen feldern
,”
Z. Phys.
65
,
431
455
(
1930
);
C.
Lanczos
,
Zur intensitätsschwächung der spektrallinien in hohen feldern
,”
Z. Phys.
68
,
204
232
(
1931
).
433.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
, Course of Theoretical Physics Vol. 3 (
Addison-Wesley Publishing Co., Inc.
,
Reading, MA
,
1958
) [
J. B.
Sykes
and
J. S.
Bell
,
1948
(in Russian)].
434.
O. E.
Lanford
and
D.
Ruelle
, “
Observables at infinity and states with short-range correlations in statistical mechanics
,”
Commun. Math. Phys.
13
,
194
215
(
1969
).
435.
A.
Laptev
and
T.
Weidl
, “
Sharp Lieb-Thirring inequalities in high dimensions
,”
Acta Math.
184
,
87
111
(
2000
).
436.
Y.
Last
, “
A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants
,”
Commun. Math. Phys.
151
,
183
192
(
1993
).
437.
Y.
Last
, “
Zero measure spectrum for the almost Mathieu operator
,”
Commun. Math. Phys.
164
,
421
432
(
1994
).
438.
Y.
Last
, “
Almost everything about the almost Mathieu operator. I
,” in
XIth International Congress of Mathematical Physics, Paris, 1994
(
International Press
,
Cambridge, MA
,
1995
), pp.
366
372
.
439.
Y.
Last
and
B.
Simon
, “
Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators
,”
Invent. Math.
135
,
329
367
(
1999
).
440.
Y.
Last
and
B.
Simon
, “
The essential spectrum of Schrödinger, Jacobi, and CMV operators
,”
J. Anal. Math.
98
,
183
220
(
2006
).