We investigate Dirac’s bra–ket formalism based on a rigged Hilbert space for a non-Hermitian quantum system with a positive-definite metric. First, the rigged Hilbert space, characterized by a positive-definite metric, is established. With the aid of the nuclear spectral theorem for the obtained rigged Hilbert space, spectral expansions are shown for the bra–kets by the generalized eigenvectors of a quasi-Hermitian operator. The spectral expansions are utilized to endow the complete bi-orthogonal system and the transformation theory between the Hermitian and non-Hermitian systems. As an example of application, we show a specific description of our rigged Hilbert space treatment for some parity-time symmetrical quantum systems.
REFERENCES
1.
I. M.
Gelfand
and N. Y.
Vilenkin
, Generalized Functions. Volume IV
(Academic Press
, New York
, 1964
).2.
K.
Maurin
, Generalized Eigenfunction Expansions and Unitary Representations of Topological Groups
(Polish Scientific Publishers
, Warsaw
, 1968
).3.
J. E.
Roberts
, J. Math. Phys.
7
, 1097
(1966
).4.
J. E.
Roberts
, Commun. Math. Phys.
3
, 98
(1966
).5.
J. P.
Antoine
, J. Math. Phys.
10
, 53
(1969
).6.
J. P.
Antoine
, J. Math. Phys.
10
, 2276
(1969
).7.
O.
Melsheimer
, J. Math. Phys.
15
, 902
(1974
).8.
O.
Melsheimer
, J. Math. Phys.
15
, 917
(1974
).9.
A.
Bohm
, The Rigged Hilbert Space and Quantum Mechanics
, Lecture Notes in Physics Vol. 78 (Springer-Verlag
, Berlin, Heidelberg; New York
, 1978
).10.
Advances in Chemical Physics: Resonances, Instability, and Irreversibility
, edited by I.
Prigogine
and S. A.
Rice
(John Wiley & Sons
, NewYork
, 1996
), Vol. 99.11.
Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces
, edited by A.
Bohm
(Springer-Verlag
, Berlin, Heidelberg
, 1998
).12.
I.
Antoniou
, M.
Gadella
, and Z.
Suchanecki
, “Some general properties of the Liouville operator
,” Lect. Notes Phys.
54
, 38
–56
(1998
).13.
I. E.
Antoniou
and M.
Gadell
, “Irreversibility, resonances and rigged Hilbert spaces
,” in Irreversible Quantum Dynamics
, Lecture Notes in Physics Vol. 622, edited by F.
Benatti
and R.
Floreanini
(Springer
, Berlin, Germany
, 2003
), pp. 245
–302
.14.
M.
Gadella
and F.
Gómez
, Int. J. Theor. Phys.
42
, 2225
(2003
).15.
R.
de la Madrid
, J. Phys. A: Math. Gen.
37
, 8129
(2004
).16.
R.
de la Madrid
, Eur. J. Phys.
26
, 287
(2005
).17.
J.-P.
Antoine
, R. C.
Bishop
, A.
Bohm
, and S.
Wickramasekara
, “Rigged Hilbert spaces in quantum physics
,” in Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy
, edited by F.
Weinert
, K.
Hentschel
, and D.
Greenberger
(Springer
, Heidelberg, Berlin, Germany; New York
, 2009
), pp. 640
–651
.18.
W.
Liu
and Z.
Huang
, Int. J. Theor. Phys.
52
, 4323
(2013
).19.
20.
J.-P.
Antoine
, Entropy
23
, 124
(2021
).21.
V.
Fernández
, R.
Ramírez
, and M.
Reboiro
, J. Phys. A: Math. Theor.
55
, 015303
(2022
).22.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
, 4th ed. (Oxford University Press
, Oxford
, 1958
).23.
C. M.
Bender
and S.
Boettcher
, Phys. Rev. Lett.
80
, 5243
(1998
).24.
C. M.
Bender
, Rep. Prog. Phys.
70
, 947
(2007
).25.
J.
Dieudonné
, “Quasi-Hermitian operators
,” in Proceedings of the International Symposium on Linear Spaces
(Pergamon
, Jerusalem; Oxford
, 1960; 1961
), pp. 115
–122
.26.
A.
Mostafazadeh
, Int. J. Geom. Methods Mod. Phys.
7
, 1191
(2010
).27.
J.-P.
Antoine
and C.
Trapani
, J. Phys. A: Math. Gen.
46
, 025204
(2013
);J.-P.
Antoine
and C.
Trapani
J. Phys. A: Math. Gen.
46
, 329501
329501
(2013
).28.
C. M.
Bender
, D. C.
Brody
, and H. F.
Jones
, Phys. Rev. Lett.
89
, 270401
(2002
).29.
M. S.
Swanson
, J. Math. Phys.
45
, 585
(2004
).30.
D. P.
Musumba
, H. B.
Geyer
, and W. D.
Heiss
, J. Phys. A: Math. Gen.
40
, F75
(2007
).31.
C.
Quesne
, J. Phys. A: Math. Gen.
40
, F745
(2007
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.