We investigate Dirac’s bra–ket formalism based on a rigged Hilbert space for a non-Hermitian quantum system with a positive-definite metric. First, the rigged Hilbert space, characterized by a positive-definite metric, is established. With the aid of the nuclear spectral theorem for the obtained rigged Hilbert space, spectral expansions are shown for the bra–kets by the generalized eigenvectors of a quasi-Hermitian operator. The spectral expansions are utilized to endow the complete bi-orthogonal system and the transformation theory between the Hermitian and non-Hermitian systems. As an example of application, we show a specific description of our rigged Hilbert space treatment for some parity-time symmetrical quantum systems.

1.
I. M.
Gelfand
and
N. Y.
Vilenkin
,
Generalized Functions. Volume IV
(
Academic Press
,
New York
,
1964
).
2.
K.
Maurin
,
Generalized Eigenfunction Expansions and Unitary Representations of Topological Groups
(
Polish Scientific Publishers
,
Warsaw
,
1968
).
3.
J. E.
Roberts
,
J. Math. Phys.
7
,
1097
(
1966
).
4.
J. E.
Roberts
,
Commun. Math. Phys.
3
,
98
(
1966
).
5.
J. P.
Antoine
,
J. Math. Phys.
10
,
53
(
1969
).
6.
J. P.
Antoine
,
J. Math. Phys.
10
,
2276
(
1969
).
7.
O.
Melsheimer
,
J. Math. Phys.
15
,
902
(
1974
).
8.
O.
Melsheimer
,
J. Math. Phys.
15
,
917
(
1974
).
9.
A.
Bohm
,
The Rigged Hilbert Space and Quantum Mechanics
, Lecture Notes in Physics Vol. 78 (
Springer-Verlag
,
Berlin, Heidelberg; New York
,
1978
).
10.
Advances in Chemical Physics: Resonances, Instability, and Irreversibility
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons
,
NewYork
,
1996
), Vol. 99.
11.
Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces
, edited by
A.
Bohm
(
Springer-Verlag
,
Berlin, Heidelberg
,
1998
).
12.
I.
Antoniou
,
M.
Gadella
, and
Z.
Suchanecki
, “
Some general properties of the Liouville operator
,”
Lect. Notes Phys.
54
,
38
56
(
1998
).
13.
I. E.
Antoniou
and
M.
Gadell
, “
Irreversibility, resonances and rigged Hilbert spaces
,” in
Irreversible Quantum Dynamics
, Lecture Notes in Physics Vol. 622, edited by
F.
Benatti
and
R.
Floreanini
(
Springer
,
Berlin, Germany
,
2003
), pp.
245
302
.
14.
M.
Gadella
and
F.
Gómez
,
Int. J. Theor. Phys.
42
,
2225
(
2003
).
15.
R.
de la Madrid
,
J. Phys. A: Math. Gen.
37
,
8129
(
2004
).
16.
R.
de la Madrid
,
Eur. J. Phys.
26
,
287
(
2005
).
17.
J.-P.
Antoine
,
R. C.
Bishop
,
A.
Bohm
, and
S.
Wickramasekara
, “
Rigged Hilbert spaces in quantum physics
,” in
Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy
, edited by
F.
Weinert
,
K.
Hentschel
, and
D.
Greenberger
(
Springer
,
Heidelberg, Berlin, Germany; New York
,
2009
), pp.
640
651
.
18.
W.
Liu
and
Z.
Huang
,
Int. J. Theor. Phys.
52
,
4323
(
2013
).
19.
L.
Laan
, “
Mathematics and physics
,” B.Sc. thesis,
FSE, University of Groningen
,
2019
.
20.
21.
V.
Fernández
,
R.
Ramírez
, and
M.
Reboiro
,
J. Phys. A: Math. Theor.
55
,
015303
(
2022
).
22.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
, 4th ed. (
Oxford University Press
,
Oxford
,
1958
).
23.
C. M.
Bender
and
S.
Boettcher
,
Phys. Rev. Lett.
80
,
5243
(
1998
).
24.
C. M.
Bender
,
Rep. Prog. Phys.
70
,
947
(
2007
).
25.
J.
Dieudonné
, “
Quasi-Hermitian operators
,” in
Proceedings of the International Symposium on Linear Spaces
(
Pergamon
,
Jerusalem; Oxford
,
1960; 1961
), pp.
115
122
.
26.
A.
Mostafazadeh
,
Int. J. Geom. Methods Mod. Phys.
7
,
1191
(
2010
).
27.
J.-P.
Antoine
and
C.
Trapani
,
J. Phys. A: Math. Gen.
46
,
025204
(
2013
);
J.-P.
Antoine
and
C.
Trapani
J. Phys. A: Math. Gen.
46
,
329501
329501
(
2013
).
28.
C. M.
Bender
,
D. C.
Brody
, and
H. F.
Jones
,
Phys. Rev. Lett.
89
,
270401
(
2002
).
29.
M. S.
Swanson
,
J. Math. Phys.
45
,
585
(
2004
).
30.
D. P.
Musumba
,
H. B.
Geyer
, and
W. D.
Heiss
,
J. Phys. A: Math. Gen.
40
,
F75
(
2007
).
31.
C.
Quesne
,
J. Phys. A: Math. Gen.
40
,
F745
(
2007
).
You do not currently have access to this content.