We develop a formalism to estimate, simultaneously, the usual bulk and edge indices from topological insulators in the case of a finite sample with open boundary conditions and provide a physical interpretation of these quantities. We then show that they converge exponentially fast to an integer value when we increase the system size and also show that bulk and edge index estimates coincide at finite size. The theorem applies to any non-homogeneous system, such as disordered or defect configurations. We focus on one-dimensional chains with chiral symmetry, such as the Su–Schrieffer–Heeger model, but the proof actually only requires the Hamiltonian to be of short range and with a spectral gap in the bulk. The definition of bulk and edge index estimates relies on a finite-size version of the switch-function formalism where the Fermi projector is smoothed in energy using a carefully chosen regularization parameter.

1.
Anderson
,
R. F. V.
, “
The Weyl functional calculus
,”
J. Funct. Anal.
4
(
2
),
240
267
(
1969
).
2.
Asbóth
,
J. K.
,
Oroszlány
,
L.
, and
Pályi
,
A.
, “
The Su-Schrieffer-Heeger (SSH) model
,” in
A Short Course on Topological Insulators
(
Springer
,
2016
), pp.
1
22
.
3.
Avron
,
J. E.
,
Seiler
,
R.
, and
Simon
,
B.
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
(
2
),
399
422
(
1994
).
4.
Bachmann
,
S.
,
Bols
,
A.
,
De Roeck
,
W.
, and
Fraas
,
M.
, “
A many-body index for quantum charge transport
,”
Commun. Math. Phys.
375
(
2
),
1249
1272
(
2020
).
5.
Bellissard
,
J.
,
van Elst
,
A.
, and
Schulz‐Baldes
,
H.
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
(
10
),
5373
5451
(
1994
).
6.
Bianco
,
R.
and
Resta
,
R.
, “
Mapping topological order in coordinate space
,”
Phys. Rev. B
84
(
24
),
241106
(
2011
).
7.
Cornean
,
H. D.
,
Moscolari
,
M.
, and
Teufel
,
S.
, “
General bulk-edge correspondence at positive temperature
,” arXiv:2107.13456 (
2021
).
8.
Delplace
,
P.
,
Ullmo
,
D.
, and
Montambaux
,
G.
, “
Zak phase and the existence of edge states in graphene
,”
Phys. Rev. B
84
,
195452
(
2011
).
9.
Graf
,
G. M.
and
Porta
,
M.
, “
Bulk-edge correspondence for two-dimensional topological insulators
,”
Commun. Math. Phys.
324
(
3
),
851
895
(
2013
).
10.
Graf
,
G. M.
and
Shapiro
,
J.
, “
The bulk-edge correspondence for disordered chiral chains
,”
Commun. Math. Phys.
363
(
3
),
829
846
(
2018
).
11.
Graf
,
G. M.
and
Tauber
,
C.
, “
Bulk–edge correspondence for two-dimensional Floquet topological insulators
,”
Ann. Henri Poincare
19
(
3
),
709
741
(
2018
).
12.
Guzmán
,
M.
,
Bartolo
,
D.
, and
Carpentier
,
D.
, “
Geometry and topology tango in ordered and amorphous chiral matter
,”
SciPost Phys.
12
(
1
),
038
(
2021
).
13.
Hasan
,
M. Z.
and
Kane
,
C. L.
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
(
4
),
3045
(
2010
).
14.
Hastings
,
M. B.
, “
Locality in quantum systems
,” in (
Oxford Academic
,
2010
), Vol. 95, pp.
171
212
.
15.
Hastings
,
M. B.
and
Loring
,
T. A.
, “
Topological insulators and C*-algebras: Theory and numerical practice
,”
Ann. Phys.
326
(
7
),
1699
1759
(
2011
).
16.
Hatsugai
,
Y.
, “
Chern number and edge states in the integer quantum Hall effect
,”
Phys. Rev. Lett.
71
,
3697
3700
(
1993
).
17.
Jezequel
,
L.
and
Delplace
,
P.
, “
Nonlinear edge modes from topological one-dimensional lattices
,”
Phys. Rev. B
105
(
3
),
035410
(
2022
).
18.
Kane
,
C. L.
and
Lubensky
,
T. C.
, “
Topological boundary modes in isostatic lattices
,”
Nat. Phys.
10
(
1
),
39
45
(
2013
).
19.
Kellendonk
,
J.
,
Richter
,
T.
, and
Schulz-Baldes
,
H.
, “
Edge current channels and Chern numbers in the integer quantum Hall effect
,”
Rev. Math. Phys.
14
(
01
),
87
119
(
2002
).
20.
Kitaev
,
A.
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
(
1
),
22
30
(
2009
).
21.
Klitzing
,
K. v.
,
Dorda
,
G.
, and
Pepper
,
M.
, “
New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance
,”
Phys. Rev. Lett.
45
,
494
497
(
1980
).
22.
Loring
,
T.
and
Schulz-Baldes
,
H.
, “
Finite volume calculation of K-theory invariants
,” arXiv:1701.07455 (
2017
).
23.
Loring
,
T.
and
Schulz-Baldes
,
H.
, “
The spectral localizer for even index pairings
,”
J. Noncommutative Geom.
14
,
1
(
2018
).
24.
Loring
,
T. A.
,
Lu
,
J.
, and
Watson
,
A. B.
, “
Locality of the windowed local density of states
,” arXiv:2101.00272 (
2021
).
25.
Michala
,
J.
,
Pierson
,
A.
,
Loring
,
T. A.
, and
Watson
,
A. B.
, “
Wave-packet propagation in a finite topological insulator and the spectral localizer index
,”
Involve, J. Math.
14
(
2
),
209
239
(
2021
).
26.
Mondragon-Shem
,
I.
,
Hughes
,
T. L.
,
Song
,
J.
, and
Prodan
,
E.
, “
Topological criticality in the chiral-symmetric AIII class at strong disorder
,”
Phys. Rev. Lett.
113
(
4
),
046802
(
2014
).
27.
Prodan
,
E.
,
A Computational Non-Commutative Geometry Program for Disordered Topological Insulators
(
Springer
,
2017
), Vol. 23.
28.
Prodan
,
E.
and
Schulz-Baldes
,
H.
, , Mathematical Physics Studies Vol. 02 (
Springer
,
2016
).
29.
Robertson
,
H. P.
, “
The uncertainty principle
,”
Phys. Rev.
34
,
163
164
(
1929
).
30.
Ryu
,
S.
,
Schnyder
,
A. P.
,
Furusaki
,
A.
, and
Ludwig
,
A. W. W.
, “
Topological insulators and superconductors: Tenfold way and dimensional hierarchy
,”
New J. Phys.
12
(
6
),
065010
(
2010
).
31.
Shockley
,
W.
, “
On the surface states associated with a periodic potential
,”
Phys. Rev.
56
(
4
),
317
(
1939
).
32.
Su
,
W. P.
,
Schrieffer
,
J. R.
, and
Heeger
,
A. J.
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
1701
(
1979
).
33.
Tauber
,
C.
, “
Effective vacua for Floquet topological phases: A numerical perspective on the switch-function formalism
,”
Phys. Rev. B
97
(
19
),
195312
(
2018
).
34.
Thouless
,
D. J.
,
Kohmoto
,
M.
,
Nightingale
,
M. P.
, and
den Nijs
,
M.
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
35.
Toniolo
,
D.
, “
On the Bott index of unitary matrices on a finite torus
,” arXiv:1708.05912 (
2017
).
36.
Explicitly, one has for φHL and φbulkHbulk,
You do not currently have access to this content.