Consider long-range Bernoulli percolation on Zd in which we connect each pair of distinct points x and y by an edge with probability 1 − exp(−βxydα), where α > 0 is fixed and β ⩾ 0 is a parameter. We prove that if 0 < α < d, then the critical two-point function satisfies 1|Λr|xΛrPβc(0x)rd+α for every r ⩾ 1, where Λr=[r,r]dZd. In other words, the critical two-point function on Zd is always bounded above on average by the critical two-point function on the hierarchical lattice. This upper bound is believed to be sharp for values of α strictly below the crossover valueαc(d), where the values of several critical exponents for long-range percolation on Zd and the hierarchical lattice are believed to be equal.

1.
L. S.
Schulman
, “
Long range percolation in one dimension
,”
J. Phys. A: Math. Gen.
16
(
17
),
L639
(
1983
).
2.
C. M.
Newman
and
L. S.
Schulman
, “
One dimensional 1/|j − i|S percolation models: The existence of a transition for S ⩽ 2
,”
Commun. Math. Phys.
104
(
4
),
547
571
(
1986
).
3.
J.
Ding
and
A.
Sly
, “
Distances in critical long range percolation
,” arXiv:1303.3995 (
2013
).
4.
L.-C.
Chen
and
A.
Sakai
, “
Critical two-point functions for long-range statistical-mechanical models in high dimensions
,”
Ann. Probab.
43
(
2
),
639
681
(
2015
).
5.
M.
Heydenreich
,
R.
van der Hofstad
, and
A.
Sakai
, “
Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk
,”
J. Stat. Phys.
132
(
6
),
1001
1049
(
2008
).
6.
H.
Duminil-Copin
,
C.
Garban
, and
V.
Tassion
, “
Long-range models in 1D revisited
,” arXiv:2011.04642 (
2020
).
7.
T.
Hutchcroft
, “
Power-law bounds for critical long-range percolation below the upper-critical dimension
,”
Probab. Theory Relat. Fields
181
(
1–3
),
533
570
(
2021
).
8.
M.
Heydenreich
and
R.
van der Hofstad
,
Progress in High-Dimensional Percolation and Random Graphs
, CRM Short Courses (
Springer; Centre de Recherches Mathématiques
,
Cham; Montreal, QC
,
2017
).
9.
M.
Biskup
and
A.
Krieger
, “
Arithmetic oscillations of the chemical distance in long-range percolation on Zd
,” arXiv:2112.12365 (
2021
).
10.
N.
Berger
, “
Transience, recurrence and critical behavior for long-range percolation
,”
Commun. Math. Phys.
226
(
3
),
531
558
(
2002
).
11.
M.
Aizenman
and
C. M.
Newman
, “
Discontinuity of the percolation density in one-dimensional 1/|x − y|2 percolation models
,”
Commun. Math. Phys.
107
(
4
),
611
647
(
1986
).
12.
G.
Grimmett
,
Percolation
, 2nd ed., Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) Vol. 321 (
Springer-Verlag
,
Berlin
,
1999
).
13.
G.
Slade
,
The Lace Expansion and its Applications
, Lecture Notes in Mathematics Vol. 1879 (
Springer-Verlag
,
Berlin
,
2006
), Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, edited and with a foreword by Jean Picard.
14.
T.
Hara
and
G.
Slade
, “
Mean-field behaviour and the lace expansion
,” in
Probability and Phase Transition
(
Springer
,
1994
), pp.
87
122
.
15.
T.
Hara
and
G.
Slade
, “
Mean-field critical behaviour for percolation in high dimensions
,”
Commun. Math. Phys.
128
(
2
),
333
391
(
1990
).
16.
M.
Aizenman
and
C. M.
Newman
, “
Tree graph inequalities and critical behavior in percolation models
,”
J. Stat. Phys.
36
(
1–2
),
107
143
(
1984
).
17.
D. J.
Barsky
and
M.
Aizenman
, “
Percolation critical exponents under the triangle condition
,”
Ann. Probab.
19
(
4
),
1520
1536
(
1991
).
18.
R.
Fitzner
and
R.
van der Hofstad
, “
Mean-field behavior for nearest-neighbor percolation in d > 10
,”
Electron. J. Probab.
22
,
1
65
(
2017
).
19.
T.
Hara
,
R.
van der Hofstad
, and
G.
Slade
, “
Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models
,”
Ann. Probab.
31
(
1
),
349
408
(
2003
).
20.
H.
Kesten
, “
Scaling relations for 2D-percolation
,”
Commun. Math. Phys.
109
(
1
),
109
156
(
1987
).
21.
S.
Smirnov
and
W.
Werner
, “
Critical exponents for two-dimensional percolation
,”
Math. Res. Lett.
8
(
5–6
),
729
744
(
2001
).
22.
S.
Smirnov
, “
Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits
,”
C. R. Acad. Sci., Ser. I
333
(
3
),
239
244
(
2001
).
23.
G.
Lawler
,
O.
Schramm
,
W.
Werner
 et al., “
One-arm exponent for critical 2D percolation
,”
Electron. J. Probab.
7
,
1
(
2002
).
24.
B.
Nienhuis
, “
Coulomb gas formulation of two-dimensional phase transitions
,”
Phase Transitions Crit. Phenom.
11
,
1
53
(
1987
).
25.

The fact that 2 − η = α ∧ 2 is the mean-field value of this exponent is related to the fact that the inverse of the fractional Laplacian (−Δ)α/2 decays as ‖xd+α for α < 2 and as ‖xd+2 for α > 2 (Ref. 32, Secs. 2 and 3).

26.
J.
Sak
, “
Recursion relations and fixed points for ferromagnets with long-range interactions
,”
Phys. Rev. B
8
(
1
),
281
(
1973
).
27.
E.
Brezin
,
G.
Parisi
, and
F.
Ricci-Tersenghi
, “
The crossover region between long-range and short-range interactions for the critical exponents
,”
J. Stat. Phys.
157
(
4–5
),
855
868
(
2014
).
28.
C.
Behan
,
L.
Rastelli
,
S.
Rychkov
, and
B.
Zan
, “
A scaling theory for the long-range to short-range crossover and an infrared duality
,”
J. Phys. A: Math. Theor.
50
(
35
),
354002
(
2017
).
29.
E.
Luijten
, “
Interaction range, universality and the upper critical dimension
,” Ph.D. thesis,
Technische Universiteit Delft
,
Delft, The Netherlands
,
1997
.
30.
G.
Gori
,
M.
Michelangeli
,
N.
Defenu
, and
A.
Trombettoni
, “
One-dimensional long-range percolation: A numerical study
,”
Phys. Rev. E
96
(
1
),
012108
(
2017
).
31.
L.-C.
Chen
and
A.
Sakai
, “
Critical two-point function for long-range models with power-law couplings: The marginal case for d ⩾ dc
,”
Commun. Math. Phys.
372
(
2
),
543
572
(
2019
).
32.
G.
Slade
, “
Critical exponents for long-range O(n) models below the upper critical dimension
,”
Commun. Math. Phys.
358
(
1
),
343
436
(
2018
).
33.
M.
Lohmann
,
G.
Slade
, and
B. C.
Wallace
, “
Critical two-point function for long-range O(n) models below the upper critical dimension
,”
J. Stat. Phys.
169
(
6
),
1132
1161
(
2017
).
34.
T.
Hutchcroft
, “
The critical two-point function for long-range percolation on the hierarchical lattice
,” arXiv:2103.17013 (
2021
).
35.

Here, we are avoiding making the stronger statement that the models belong to the same universality class since this claim would arguably be too strong. Indeed, while the models may share exponents, they should not have a common scaling limit because in the Euclidean case, the relevant continuum limit should be defined on Rd, while in the hierarchical case, it should be defined on the xmltex \beginMathtotextLxmltex \endMathtotext-adic numbers. See Ref. 48 for detailed discussions of related phenomena. It is also unclear at present whether one should expect the exponents describing off-critical behavior to coincide.

36.
A.
Sakai
, “
Crossover phenomena in the critical behavior for long-range models with power-law couplings
,” arXiv:1812.10275 (
2018
).
37.
J.
Wang
,
Z.
Zhou
,
W.
Zhang
,
T. M.
Garoni
, and
Y.
Deng
, “
Bond and site percolation in three dimensions
,”
Phys. Rev. E
87
(
5
),
052107
(
2013
).
38.

See Remark 4.2.

39.
Y.
Aoun
, “
Sharp asymptotics of correlation functions in the subcritical long-range random-cluster and Potts models
,”
Electron. Commun. Probab.
26
,
1
9
(
2021
).
40.
T.
Hutchcroft
, “
Locality of the critical probability for transitive graphs of exponential growth
,”
Ann. Probab.
48
(
3
),
1352
1371
(
2020
).
41.
M.
Aizenman
and
D. J.
Barsky
, “
Sharpness of the phase transition in percolation models
,”
Commun. Math. Phys.
108
(
3
),
489
526
(
1987
).
42.
H.
Duminil-Copin
and
V.
Tassion
, “
A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model
,”
Commun. Math. Phys.
343
(
2
),
725
745
(
2016
).
43.
T.
Hutchcroft
, “
New critical exponent inequalities for percolation and the random cluster model
,”
Probab. Math. Phys.
1
(
1
),
147
165
(
2020
).
44.
T.
Hutchcroft
, “
Continuity of the Ising phase transition on nonamenable groups
,” arXiv:2007.15625 (
2020
).
45.
M.
Aizenman
,
H.
Kesten
, and
C. M.
Newman
, “
Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation
,”
Commun. Math. Phys.
111
(
4
),
505
531
(
1987
).
46.
J.
Bäumler
and
N.
Berger
, “
Isoperimetric lower bounds for critical exponents for long-range percolation
,” arXiv:2204.12410 (
2022
).
47.
T.
Hutchcroft
, “
On the derivation of mean-field percolation critical exponents from the triangle condition
,”
J. Stat. Phys.
189
,
6
(
2022
).
48.
N.
Halberstam
and
T.
Hutchcroft
, “
What are the limits of universality?
,”
Proc. R. Soc. A
478
(
2259
),
20210857
(
2022
).
You do not currently have access to this content.