Kundt spacetimes are of great importance to general relativity. We show that a Kundt spacetime is a Lorentz manifold with a non-singular isotropic geodesic vector field having its orthogonal distribution integrable and determining a totally geodesic foliation. We give the local structure of Kundt spacetimes and some properties of left invariant Kundt structures on Lie groups. Finally, we classify all left invariant Kundt structures on three-dimensional simply connected unimodular Lie groups.
REFERENCES
1.
H.
Stephani
, D.
Kramer
, M.
MacCallum
, C.
Hoenselaers
, and E.
Herlt
, Exact Solutions of Einstein’s Field Equations
(Cambridge University Press
, 2009
).2.
A.
Coley
, S.
Hervik
, G.
Papadopoulos
, and N.
Pelavas
, “Kundt spacetimes
,” Classical Quantum Gravity
26
(10
), 105016
(2009
).3.
A.
Fino
, T.
Leistner
, and A.
Taghavi-Chabert
, “Almost Robinson geometries
,” arXiv:2102.05634v2 (2021
).4.
J.
Brannlund
, A.
Coley
, and S.
Hervik
, “Supersymmetry holonomy and Kundt spacetimes
,” Classical Quantum Gravity
25
, 195007
(2008
).5.
A.
Coley
, R.
Milson
, N.
Pelavas
, V.
Pravda
, A.
Pravdová
, and R.
Zalaletdinov
, “Generalizations of pp-wave spacetimes in higher dimensions
,” Phys. Rev. D
67
, 104020
(2003
).6.
7.
A.
Coley
, S.
Hervik
, and N.
Pelavas
, “Lorentzian spacetimes with constant curvature invariants in three dimensions
,” Classical Quantum Gravity
25
, 025008
(2008
).8.
A.
Coley
, S.
Hervik
, and N.
Pelavas
, “Spacetimes characterized by their scalar curvature invariants
,” Classical Quantum Gravity
26
, 025013
(2009
).9.
S.
Hervik
and D.
McNutt
, “Locally homogeneous Kundt triples and CSI metrics
,” Classical Quantum Gravity
36
, 185013
(2019
).10.
B.
Kruglikov
and E.
Schneider
, “Differential invariants of Kundt spacetimes
,” Classical Quantum Gravity
38
, 195017
(2021
).11.
R.
Švarc
, J.
Podolsky
, and O.
Hruška
, “Kundt spacetimes in the Einstein-Gauss-Bonnet theory
,” Phys. Rev. D
102
, 084012
(2020
).12.
A.
Zeghib
, “Geodesic foliations in Lorentz 3-manifolds
,” Commun. Math. Helv.
74
, 1
–21
(1999
).13.
R. F.
Streater
, “The representations of the oscillator group
,” Commun. Math. Phys.
4
, 217
(1967
).14.
M.
Boucetta
and A.
Medina
, “Solutions of the Yang-Baxter equations on quadratic lie groups: The case of oscillator groups
,” J. Geom. Phys.
61
, 2309
–2320
(2011
).15.
G.
Calvaruso
and J.
Van der Veken
, “Totally geodesic and parallel hypersurfaces of four dimensional oscillator groups
,” Results Math.
64
, 135
–153
(2013
).16.
R.
Duran Diaz
, P. M.
Gadea
, and J. A.
Oubina
, “Reductive decompositions and Einstein-Yang-Mills equations associated to the oscillator group
,” J. Math. Phys.
40
, 3490
–3498
(1999
).17.
P. M.
Gadea
and J. A.
Oubiña
, “Homogeneous Lorentzian structures on the oscillator groups
,” Arch. Math.
73
, 311
–320
(1999
).18.
A. V.
Levitchev
, “Chronogeometry of an electromagnetic wave given by a bi-invariant metric on the oscillator group
,” Siberian Math. J.
27
, 237
–245
(1986
).19.
D.
Müller
and F.
Ricci
, “On the Laplace-Beltrami operator on the oscillator group
,” J. Reine Angew. Math.
390
, 193
–207
(1988
).20.
K.
Melnick
, Dynamics on Lorentz Manifolds
, (2006
), available at https://www.math.umd.edu/~kmelnick/docs/papers/finalcours.pdf.21.
A.
Scot
, Dynamics on Lorentz Manifolds
, 1st ed. (World Scientific Publishing Company
, 2002
).22.
A.
Zeghib
, “Isometry groups and geodesic foliations of Lorentz manifolds. Part II: Geometry of analytic Lorentz manifolds with large isometry groups
,” Geom. Funct. Anal.
9
, 823
–854
(1999
).23.
M.
Boucetta
and A.
Chakkar
, “The moduli space of Lorentzian left invariant metrics on three dimensional unimodular simply connected Lie groups
,” J. Korean Math. Soc.
59
, 651
–684
(2022
).24.
25.
A.
Murcia
and C. S.
Shahbazi
, “Supersymmetric Kundt four manifolds and their spinorial evolution flows
,” arXiv:2209.04396 (2022
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.