Employing internal quantum systems as reference frames is a crucial concept in quantum gravity, gauge theories, and quantum foundations whenever external relata are unavailable. In this work, we give a comprehensive and self-contained treatment of such quantum reference frames (QRFs) for the case when the underlying configuration space is a finite Abelian group, significantly extending our previous work [M. Krumm, P. A. Höhn, and M. P. Müller, Quantum 5, 530 (2021)]. The simplicity of this setup admits a fully rigorous quantum information–theoretic analysis, while maintaining sufficient structure for exploring many of the conceptual and structural questions also pertinent to more complicated setups. We exploit this to derive several important structures of constraint quantization with quantum information–theoretic methods and to reveal the relation between different approaches to QRF covariance. In particular, we characterize the “physical Hilbert space”—the arena of the “perspective-neutral” approach—as the maximal subspace that admits frame-independent descriptions of purifications of states. We then demonstrate the kinematical equivalence and, surprising, dynamical inequivalence of the “perspective-neutral” and the “alignability” approach to QRFs. While the former admits unitaries generating transitions between arbitrary subsystem relations, the latter, remarkably, admits no such dynamics when requiring symmetry-preservation. We illustrate these findings by example of interacting discrete particles, including how dynamics can be described “relative to one of the subystems.”

1.
C.
Rovelli
,
Quantum Gravity
(
Cambridge University Press
,
2004
).
2.
T.
Thiemann
,
Modern Canonical Quantum General Relativity
(
Cambridge University Press
,
2007
).
3.
J.
Tambornino
, “
Relational observables in gravity: A review
,”
SIGMA
8
,
017
(
2012
).
4.
C.
Rovelli
, “
What is observable in classical and quantum gravity?
,”
Classical Quantum Gravity
8
,
297
(
1991
).
5.
C.
Rovelli
, “
Quantum reference systems
,”
Classical Quantum Gravity
8
,
317
(
1991
).
6.
C.
Rovelli
, “
Time in quantum gravity: Physics beyond the Schrödinger regime
,”
Phys. Rev. D
43
,
442
456
(
1991
).
7.
B.
Dittrich
, “
Partial and complete observables for Hamiltonian constrained systems
,”
Gen. Relativ. Gravitation
39
,
1891
(
2007
).
8.
B.
Dittrich
, “
Partial and complete observables for canonical general relativity
,”
Classical Quantum Gravity
23
,
6155
(
2006
).
9.
J.
Åberg
, “
Catalytic coherence
,”
Phys. Rev. Lett.
113
,
150402
(
2014
).
10.
M.
Lostaglio
,
D.
Jennings
, and
T.
Rudolph
, “
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy
,”
Nat. Commun.
6
,
6383
(
2015
).
11.
M.
Lostaglio
,
K.
Korzekwa
,
D.
Jennings
, and
T.
Rudolph
, “
Quantum coherence, time-translation symmetry, and thermodynamics
,”
Phys. Rev. X
5
,
021001
(
2015
).
12.
M.
Lostaglio
and
M. P.
Müller
, “
Coherence and asymmetry cannot be broadcast
,”
Phys. Rev. Lett.
123
,
020403
(
2019
).
13.
I.
Marvian
and
R. W.
Spekkens
, “
No-broadcasting theorem for quantum asymmetry and coherence and a trade-off relation for approximate broadcasting
,”
Phys. Rev. Lett.
123
,
020404
(
2019
).
14.
P.
Erker
,
M. T.
Mitchison
,
R.
Silva
,
M. P.
Woods
,
N.
Brunner
, and
M.
Huber
, “
Autonomous quantum clocks: Does thermodynamics limit our ability to measure time?
,”
Phys. Rev. X
7
,
031022
(
2017
).
15.
P.
Ćwikliński
,
M.
Studziński
,
M.
Horodecki
, and
J.
Oppenheim
, “
Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics
,”
Phys. Rev. Lett.
115
,
210403
(
2015
).
16.
M. P.
Woods
,
R.
Silva
, and
J.
Oppenheim
, “
Autonomous quantum machines and finite-sized clocks
,”
Ann. Henri Poincare
20
,
125
(
2019
).
17.
M. P.
Woods
and
M.
Horodecki
, “
The resource theoretic paradigm of quantum thermodynamics with control
,” arXiv:1912.05562 [quant-ph].
18.
S. D.
Bartlett
,
T.
Rudolph
, and
R. W.
Spekkens
, “
Reference frames, superselection rules, and quantum information
,”
Rev. Mod. Phys.
79
,
555
(
2007
).
19.
A. R. H.
Smith
, “
Communicating without shared reference frames
,”
Phys. Rev. A
99
,
052315
(
2019
).
20.
I.
Marvian
, “
Symmetry, asymmetry and quantum information
,” Ph.D. thesis,
University of Waterloo
,
2012
.
21.
G.
Gour
and
R. W.
Spekkens
, “
The resource theory of quantum reference frames: Manipulations and monotones
,”
New J. Phys.
10
,
033023
(
2008
).
22.
G.
Gour
,
I.
Marvian
, and
R. W.
Spekkens
, “
Measuring the quality of a quantum reference frame: The relative entropy of frameness
,”
Phys. Rev. A
80
,
012307
(
2009
).
23.
I.
Marvian
and
R. W.
Spekkens
, “
Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames
,”
Phys. Rev. A
90
,
062110
(
2014
).
24.
M. C.
Palmer
,
F.
Girelli
, and
S. D.
Bartlett
, “
Changing quantum reference frames
,”
Phys. Rev. A
89
,
052121
(
2014
).
25.
A. R. H.
Smith
,
M.
Piani
, and
R. B.
Mann
, “
Quantum reference frames associated with noncompact groups: The case of translations and boosts, and the role of mass
,”
Phys. Rev. A
94
,
012333
(
2016
).
26.
Y.
Aharonov
and
L.
Susskind
, “
Charge superselection rule
,”
Phys. Rev.
155
,
1428
(
1967
).
27.
Y.
Aharonov
and
L.
Susskind
, “
Observability of the sign change of spinors under 2π rotations
,”
Phys. Rev.
158
,
1237
(
1967
).
28.
Y.
Aharonov
and
T.
Kaufherr
, “
Quantum frames of reference
,”
Phys. Rev. D
30
,
368
(
1984
).
29.
E. P.
Wigner
, “
Die messung quantenmechanischer operatoren
,”
Z. Phys. A: Hadrons Nucl.
133
,
101
(
1952
).
30.
H.
Araki
and
M. M.
Yanase
, “
Measurement of quantum mechanical operators
,”
Phys. Rev.
120
,
622
(
1960
).
31.
M. M.
Yanase
, “
Optimal measuring apparatus
,”
Phys. Rev.
123
,
666
(
1961
).
32.
L.
Loveridge
,
P.
Busch
, and
T.
Miyadera
, “
Relativity of quantum states and observables
,”
Europhys. Lett.
117
,
40004
(
2017
).
33.
L.
Loveridge
,
T.
Miyadera
, and
P.
Busch
, “
Symmetry, reference frames, and relational quantities in quantum mechanics
,”
Found. Phys.
48
,
135
198
(
2018
).
34.
T.
Miyadera
,
L.
Loveridge
, and
P.
Busch
, “
Approximating relational observables by absolute quantities: A quantum accuracy-size trade-off
,”
J. Phys. A: Math. Theor.
49
(
18
),
185301
(
2016
).
35.
L.
Loveridge
, “
A relational perspective on the Wigner-Araki-Yanase theorem
,”
J. Phys.: Conf. Ser.
1638
,
012009
(
2020
).
36.
P. A.
Höhn
and
M. P.
Müller
, “
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
,”
New J. Phys.
18
,
063026
(
2016
).
37.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
, “
Quantum mechanics and the covariance of physical laws in quantum reference frames
,”
Nat. Commun.
10
,
494
(
2019
).
38.
A.
Vanrietvelde
,
P. A.
Höhn
,
F.
Giacomini
, and
E.
Castro-Ruiz
, “
A change of perspective: Switching quantum reference frames via a perspective-neutral framework
,”
Quantum
4
,
225
(
2020
).
39.
A.-C.
de la Hamette
and
T. D.
Galley
, “
Quantum reference frames for general symmetry groups
,”
Quantum
4
,
367
(
2020
).
40.
A.
Vanrietvelde
,
P. A.
Höhn
, and
F.
Giacomini
, “
Switching quantum reference frames in the N-body problem and the absence of global relational perspectives
,” arXiv:1809.05093 [quant-ph].
41.
P. A.
Höhn
and
A.
Vanrietvelde
, “
How to switch between relational quantum clocks
,”
New J. Phys.
22
,
123048
(
2020
).
42.
P. A.
Höhn
, “
Switching internal times and a new perspective on the ‘wave function of the universe
,’”
Universe
5
(
5
),
116
(
2019
).
43.
P. A.
Höhn
,
A. R. H.
Smith
, and
M. P. E.
Lock
, “
The trinity of relational quantum dynamics
,”
Phys. Rev. D
104
,
066001
(
2021
).
44.
P. A.
Höhn
,
A. R. H.
Smith
, and
M. P. E.
Lock
, “
Equivalence of approaches to relational quantum dynamics in relativistic settings
,”
Front. Phys.
9
,
587083
(
2021
).
45.
S. A.
Ahmad
,
T. D.
Galley
,
P. A.
Höhn
,
M. P. E.
Lock
, and
A. R. H.
Smith
, “
Quantum relativity of subsystems
,”
Phys. Rev. Lett.
128
,
170401
(
2022
).
46.
F.
Giacomini
, “
Spacetime quantum reference frames and superpositions of proper times
,”
Quantum
5
,
508
(
2021
).
47.
F.
Giacomini
,
E.
Castro-Ruiz
, and
Č.
Brukner
, “
Relativistic quantum reference frames: The operational meaning of spin
,”
Phys. Rev. Lett.
123
,
090404
(
2019
).
48.
L. F.
Streiter
,
F.
Giacomini
, and
Č.
Brukner
, “
A relativistic Bell test within quantum reference frames
,”
Phys. Rev. Lett.
126
,
230403
(
2021
).
49.
E.
Castro-Ruiz
,
F.
Giacomini
,
A.
Belenchia
, and
Č.
Brukner
, “
Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems
,”
Nat. Commun.
11
,
2672
(
2020
).
50.
L.
Chataignier
, “
Construction of quantum Dirac observables and the emergence of WKB time
,”
Phys. Rev. D
101
(
8
),
086001
(
2020
).
51.
L.
Chataignier
, “
Relational observables, reference frames, and conditional probabilities
,”
Phys. Rev. D
103
(
2
),
026013
(
2021
).
52.
L.
Chataignier
and
M.
Krämer
, “
Unitarity of quantum-gravitational corrections to primordial fluctuations in the Born-Oppenheimer approach
,”
Phys. Rev. D
103
(
6
),
066005
(
2021
).
53.
A.
Ballesteros
,
F.
Giacomini
, and
G.
Gubitosi
, “
The group structure of dynamical transformations between quantum reference frames
,”
Quantum
5
,
470
(
2021
).
54.
M.
Mikusch
,
L. C.
Barbado
, and
Č.
Brukner
, “
Transformation of spin in quantum reference frames
,”
Phys. Rev. Res.
3
,
043138
(
2021
).
55.
V.
Baumann
,
M.
Krumm
,
P. A.
Guérin
, and
Č.
Brukner
, “
Noncausal Page-Wootters circuits
,”
Phys. Rev. Res.
4
,
013180
(
2022
).
56.
M. F.
Savi
and
R. M.
Angelo
, “
Quantum resource covariance
,”
Phys. Rev. A
103
(
2
),
022220
(
2021
).
57.
P. A.
Guérin
and
Č.
Brukner
, “
Observer-dependent locality of quantum events
,”
New J. Phys.
20
(
10
),
103031
(
2018
).
58.
R. M.
Angelo
,
N.
Brunner
,
S.
Popescu
,
A. J.
Short
, and
P.
Skrzypczyk
, “
Physics within a quantum reference frame
,”
J. Phys. A: Math. Theor.
44
,
145304
(
2011
).
59.
D. N.
Page
and
W. K.
Wootters
, “
Evolution without evolution: Dynamics described by stationary observables
,”
Phys. Rev. D
27
,
2885
(
1983
).
60.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum time
,”
Phys. Rev. D
92
,
045033
(
2015
).
61.
A. R. H.
Smith
and
M.
Ahmadi
, “
Quantum clocks observe classical and quantum time dilation
,”
Nat. Commun.
11
(
1
),
5360
(
2020
).
62.
A. R. H.
Smith
and
M.
Ahmadi
, “
Quantizing time: Interacting clocks and systems
,”
Quantum
3
,
160
(
2019
).
63.
M.
Krumm
,
P. A.
Höhn
, and
M. P.
Müller
, “
Quantum reference frame transformations as symmetries and the paradox of the third particle
,”
Quantum
5
,
530
(
2021
).
64.
L.
Hardy
, “
The construction interpretation: A conceptual road to quantum gravity
,” arXiv:1807.10980.
65.
L.
Hardy
, “
Implementation of the quantum equivalence principle
,” in , edited by
F.
Finster
,
D.
Giulini
,
J.
Kleiner
, and
J.
Tolksdorf
(
Birkhäuser, Cham
,
2020
).
66.
F.
Giacomini
and
Č.
Brukner
, “
Einstein’s equivalence principle for superpositions of gravitational fields and quantum reference frames
,” arXiv:2012.13754.
67.
K.
Conrad
, Characters of finite Abelian groups,
2010
, https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf.
68.
B.
Simon
,
Representations of Finite and Compact Groups
(
American Mathematical Society
,
1996
).
69.
C.
Rovelli
, “
Why gauge?
,”
Found. Phys.
44
,
91
104
(
2014
).
70.
A.-C.
de la Hamette
,
T. G.
Galley
,
P. A.
Höhn
,
L.
Loveridge
, and
M. P.
Müller
, “
Perspective-neutral approach to quantum frame covariance for general symmetry groups
,” arXiv:2110.13824.
71.
A.
Savage
,
Modern Group Theory
, Lecture Notes (
University of Ottawa
,
2017
), available at https://alistairsavage.ca/mat5145/notes/MAT5145-Modern_group_theory.pdf.
72.
H.
Casini
,
M.
Huerta
, and
J. A.
Rosabal
, “
Remarks on entanglement entropy for gauge fields
,”
Phys. Rev. D
89
(
8
),
085012
(
2014
).
73.
W.
Donnelly
and
L.
Freidel
, “
Local subsystems in gauge theory and gravity
,”
J. High Energy Phys.
2016
,
102
.
74.
M.
Geiller
and
P.
Jai-akson
, “
Extended actions, dynamics of edge modes, and entanglement entropy
,”
J. High Energy Phys.
2020
,
134
.
75.
H.
Gomes
and
A.
Riello
, “
Unified geometric framework for boundary charges and particle dressings
,”
Phys. Rev. D
98
(
2
),
025013
(
2018
).
76.
A.
Riello
, “
Edge modes without edge modes
,” arXiv:2104.10182 [hep-th].
77.
W.
Wieland
, “
New boundary variables for classical and quantum gravity on a null surface
,”
Classical Quantum Gravity
34
(
21
),
215008
(
2017
).
78.
W.
Wieland
, “
Fock representation of gravitational boundary modes and the discreteness of the area spectrum
,”
Ann. Henri Poincare
18
(
11
),
3695
3717
(
2017
).
79.
L.
Freidel
,
M.
Geiller
, and
D.
Pranzetti
, “
Edge modes of gravity. Part I. Corner potentials and charges
,”
J. High Energy Phys.
2020
,
26
.
80.
S.
Carrozza
and
P. A.
Höhn
, “
Edge modes as reference frames and boundary actions from post-selection
,”
J. High Energy Phys.
2022
,
172
.
81.

Note that the operators Πinv(|ee|iXī) generate the same subalgebra Aalg(N) for every i, i.e., the definition of Aalg(N) is independent of the choice of particle that is used as a reference. This is because Πinv(UU) = Πinv(•)for all UUsym.

82.
P. A.
Höhn
,
M. P. E.
Lock
, and
L.
Chataignier
, “
Relational dynamics with periodic clock
” (unpublished).
83.

Equivalence between the quantum coordinate transformations of the perspective-neutral approach and the QRF transformations of Ref. 37 has previously been shown for the continuum translation group in Refs. 38 and 40 , while equivalence between the QRF transformations of Refs. 37 and 39 for the same group was demonstrated in Ref. 39 . Here, we reveal the explicit equivalence between the transformations in the perspective-neutral approach and the ones in Ref. 39 for finite groups. Equivalence of the QRF transformations for general groups of Ref. 39 with those of the perspective-neutral approach will be demonstrated in Ref. 70.

84.

In continuous systems, relational Dirac observables are typically defined also “off-shell” of the constraint surface, i.e., as elements of Akin rather than Aphys, which means as incoherently rather than coherently group-averaged observables in contrast to here, e.g., see Refs. 4345, 5052, 70, and 82 within the context of constraint quantization and Refs. 18 and 3234 within the context of quantum information theory and quantum foundations. In constraint quantization, one is usually interested in their actions on Hphys, and since the two group-averaging procedures agree on this space, 63 the choice of definition then does not make a difference. Here, for notational simplicity, we restrict their definition ab initio to Aphys as some of their algebraic properties only hold when acting on Hphys. This permits us to write all their algebraic relations without additional restrictions.

85.

It is important to note that this entanglement refers to the tensor product structure of the kinematical Hilbert space HN which Hphys does not inherit. The entanglement we refer to here is thus only discernible relative to an external observer with access to an external frame, however, is not internally detectable with observables in Hphys; see Refs. 43 and 45for further discussion.

86.

For non-compact groups, this equivalence is not trivial.43,44,82

87.

The choice of sign differs from the usual convention in the continuous case. This will not change the physics, but it will slightly simplify the notation. The standard convention exp(2πinP)|g=|g+ can be reproduced by setting P:=k=0n1k|χk̄χk̄|.

88.

In principle, it would be sufficient to demand symmetry-equivalence except of identity, but we can always absorb the corresponding symmetry UUsym into the definition of W.

89.

For the reader familiar with gauge theories, note that there is a difference in nomenclature here. What we call symmetries would in gauge theories be called field-dependent gauge transformations, while the transformations changing the relation between the frame and the remaining degrees of freedom are called “symmetries”.73,80 For consistency with our quantum information based nomenclature in Ref. 63, we call these concepts differently here.

90.
M. P.
Müller
, “
Probabilistic theories and reconstructions of quantum theory
,”
SciPost Phys. Lect. Notes
28
,
1
(
2021
).
91.
L.
Hardy
, “
Quantum theory from five reasonable axioms
,” arXiv:quant-ph/0101012.
92.
B.
Dakić
and
Č.
Brukner
, “
Quantum theory and beyond: Is entanglement special?
,” in
Deep Beauty. Understanding the Quantum World through Mathematical Innovation
, edited by
H.
Halvorson
(
Cambridge University Press
,
New York
,
2011
).
93.
L.
Masanes
and
M. P.
Müller
, “
A derivation of quantum theory from physical requirements
,”
New J. Phys.
13
,
063001
(
2011
).
94.
G.
Chiribella
,
G. M.
D’Ariano
, and
P.
Perinotti
, “
Informational derivation of quantum theory
,”
Phys. Rev. A
84
,
012311
(
2011
).
95.
P. A.
Höhn
, “
Toolbox for reconstructing quantum theory from rules on information acquisition
,”
Quantum
1
,
38
(
2017
).
96.
H.
Barnum
and
J.
Hilgert
, “
Spectral properties of convex bodies
,”
J. Lie Theory
30
,
315
(
2020
).
You do not currently have access to this content.