Stabilizer operations (SO) occupy a prominent role in fault-tolerant quantum computing. They are defined operationally by the use of Clifford gates, Pauli measurements, and classical control. These operations can be efficiently simulated on a classical computer, a result which is known as the Gottesman–Knill theorem. However, an additional supply of magic states is enough to promote them to a universal, fault-tolerant model for quantum computing. To quantify the needed resources in terms of magic states, a resource theory of magic has been developed. SO are considered free within this theory; however, they are not the most general class of free operations. From an axiomatic point of view, these are the completely stabilizer-preserving (CSP) channels, defined as those that preserve the convex hull of stabilizer states. It has been an open problem to decide whether these two definitions lead to the same class of operations. In this work, we answer this question in the negative, by constructing an explicit counter-example. This indicates that recently proposed stabilizer-based simulation techniques of CSP maps are strictly more powerful than Gottesman–Knill-like methods. The result is analogous to a well-known fact in entanglement theory, namely, that there is a gap between the operationally defined class of local operations and classical communication and the axiomatically defined class of separable channels.

1.
D.
Gottesman
, “
Stabilizer codes and quantum error correction
,” Ph.D. thesis,
California Institute of Technology
,
1997
.
2.
S.
Aaronson
and
D.
Gottesman
, “
Improved simulation of stabilizer circuits
,”
Phys. Rev. A
70
,
052328
(
2004
).
3.
S.
Bravyi
and
A.
Kitaev
, “
Universal quantum computation with ideal clifford gates and noisy ancillas
,”
Phys. Rev. A
71
,
022316
(
2005
).
4.
E. F.
Galvão
, “
Discrete Wigner functions and quantum computational speedup
,”
Phys. Rev. A
71
,
042302
(
2005
).
5.
D.
Gross
, “
Non-negative Wigner functions in prime dimensions
,”
Appl. Phys. B
86
,
367
370
(
2007
).
6.
V.
Veitch
,
C.
Ferrie
,
D.
Gross
, and
J.
Emerson
, “
Negative quasi-probability as a resource for quantum computation
,”
New J. Phys.
14
,
113011
(
2012
).
7.
V.
Veitch
,
S. A.
Hamed Mousavian
,
D.
Gottesman
, and
J.
Emerson
, “
The resource theory of stabilizer quantum computation
,”
New J. Phys.
16
,
013009
(
2014
).
8.
A.
Mari
and
J.
Eisert
, “
Positive Wigner functions render classical simulation of quantum computation efficient
,”
Phys. Rev. Lett.
109
,
230503
(
2012
).
9.
M.
Howard
,
J.
Wallman
,
V.
Veitch
, and
J.
Emerson
, “
Contextuality supplies the ‘magic’ for quantum computation
,”
Nature
510
,
351
355
(
2014
).
10.
N.
Delfosse
,
C.
Okay
,
J.
Bermejo-Vega
,
D. E.
Browne
, and
R.
Raussendorf
, “
Equivalence between contextuality and negativity of the Wigner function for qudits
,”
New J. Phys.
19
,
123024
(
2017
).
11.
M.
Howard
and
E.
Campbell
, “
Application of a resource theory for magic states to fault-tolerant quantum computing
,”
Phys. Rev. Lett.
118
,
090501
(
2017
).
12.
M.
Heinrich
and
D.
Gross
, “
Robustness of magic and symmetries of the stabiliser polytope
,”
Quantum
3
,
132
(
2019
).
13.
J. R.
Seddon
and
E. T.
Campbell
, “
Quantifying magic for multi-qubit operations
,”
Proc. R. Soc. A
475
,
20190251
(
2019
).
14.
R.
Raussendorf
,
J.
Bermejo-Vega
,
E.
Tyhurst
,
C.
Okay
, and
M.
Zurel
, “
Phase space simulation method for quantum computation with magic states on qubits
,”
Phys. Rev. A
101
,
012350
(
2020
).
15.
J. R.
Seddon
,
B.
Regula
,
H.
Pashayan
,
Y.
Ouyang
, and
E. T.
Campbell
, “
Quantifying quantum speedups: Improved classical simulation from tighter magic monotones
,”
PRX Quantum
2
,
010345
(
2021
).
16.
M.
Beverland
,
E.
Campbell
,
M.
Howard
, and
V.
Kliuchnikov
, “
Lower bounds on the non-Clifford resources for quantum computations
,”
Quantum Sci. Technol.
5
,
035009
(
2020
).
17.
A.
Heimendahl
,
F.
Montealegre-Mora
,
F.
Vallentin
, and
D.
Gross
, “
Stabilizer extent is not multiplicative
,”
Quantum
5
,
400
(
2021
).
18.
Z.-W.
Liu
and
A.
Winter
, “
Many-body quantum magic
,”
PRX Quantum
3
,
020333
(
2022
).
19.
H.
Pashayan
,
J. J.
Wallman
, and
S. D.
Bartlett
, “
Estimating outcome probabilities of quantum circuits using quasiprobabilities
,”
Phys. Rev. Lett.
115
,
070501
(
2015
).
20.
S.
Bravyi
and
D.
Gosset
, “
Improved classical simulation of quantum circuits dominated by clifford gates
,”
Phys. Rev. Lett.
116
,
250501
(
2016
).
21.
S.
Bravyi
,
D.
Browne
,
P.
Calpin
,
E.
Campbell
,
D.
Gosset
, and
M.
Howard
, “
Simulation of quantum circuits by low-rank stabilizer decompositions
,”
Quantum
3
,
181
(
2019
).
22.
C. H.
Bennett
,
D. P.
DiVincenzo
,
C. A.
Fuchs
,
T.
Mor
,
E.
Rains
,
P. W.
Shor
,
J. A.
Smolin
, and
W. K.
Wootters
, “
Quantum nonlocality without entanglement
,”
Phys. Rev. A
59
,
1070
1091
(
1999
).
23.
E.
Chitambar
,
D.
Leung
,
L.
Mančinska
,
M.
Ozols
, and
A.
Winter
, “
Everything you always wanted to know about LOCC (but were afraid to ask)
,”
Commun. Math. Phys.
328
,
303
326
(
2014
).
24.
M.
Koashi
,
F.
Takenaga
,
T.
Yamamoto
, and
N.
Imoto
, “
Quantum nonlocality without entanglement in a pair of qubits
,” arXiv:0709.3196 [quant-ph] (
2007
).
25.
R.
Duan
,
Y.
Feng
,
Y.
Xin
, and
M.
Ying
, “
Distinguishability of quantum states by separable operations
,”
IEEE Trans. Inf. Theory
55
,
1320
1330
(
2009
).
26.
E.
Chitambar
,
W.
Cui
, and
H.-K.
Lo
, “
Increasing entanglement monotones by separable operations
,”
Phys. Rev. Lett.
108
,
240504
(
2012
).
27.
E.
Chitambar
, “
Local quantum transformations requiring infinite rounds of classical communication
,”
Phys. Rev. Lett.
107
,
190502
(
2011
).
28.
E. T.
Campbell
and
D. E.
Browne
, “
On the structure of protocols for magic state distillation
,” in
Theory of Quantum Computation, Communication, and Cryptography
, edited by
A.
Childs
and
M.
Mosca
(
Springer
,
Berlin, Heidelberg
,
2009
), pp.
20
32
.
29.
E.
Chitambar
and
G.
Gour
, “
Quantum resource theories
,”
Rev. Mod. Phys.
91
,
025001
(
2019
).
30.
D.
Gross
, “
Hudson’s theorem for finite-dimensional quantum systems
,”
J. Math. Phys.
47
,
122107
(
2006
).
31.
X.
Wang
,
M. M.
Wilde
, and
Y.
Su
, “
Quantifying the magic of quantum channels
,”
New J. Phys.
21
,
103002
(
2019
).
32.
M.
Ahmadi
,
H. B.
Dang
,
G.
Gour
, and
B. C.
Sanders
, “
Quantification and manipulation of magic states
,”
Phys. Rev. A
97
,
062332
(
2018
).
33.
E.
Campbell
, private communication (
2021
).
34.
M.
Heinrich
, “
On stabiliser techniques and their application to simulation and certification of quantum devices
,” Ph.D. thesis,
University of Cologne
,
2021
, https://kups.ub.uni-koeln.de/50465/.
35.
J.
Dehaene
and
B.
De Moor
, “
The Clifford group, stabilizer states, and linear and quadratic operations over GF(2)
,”
Phys. Rev. A
68
,
042318
(
2003
).
36.
R.
Howe
, “
Invariant theory and duality for classical groups over finite fields with applications to their singular representation theory
,” Preprint (
Yale University
,
1973
).
37.
R.
Howe
, “
The oscillator semigroup
,” in
The Mathematical Heritage of Hermann Weyl
, Proceedings of Symposia in Pure Mathematics Vol. 48 (
American Mathematical Society
,
1988
), pp.
61
132
.
38.
D.
Fattal
,
T. S.
Cubitt
,
Y.
Yamamoto
,
S.
Bravyi
, and
I. L.
Chuang
, “
Entanglement in the stabilizer formalism
,” arXiv:quant-ph/0406168 (
2004
).
39.
Z.-W.
Liu
, “
One-shot operational quantum resource theory
,”
Phys. Rev. Lett.
123
,
020401
(
2019
).
40.
K.
Fang
and
Z.-W.
Liu
, “
No-go theorems for quantum resource purification
,”
Phys. Rev. Lett.
125
,
060405
(
2020
).
41.
X.
Wang
,
M. M.
Wilde
, and
Y.
Su
, “
Efficiently computable bounds for magic state distillation
,”
Phys. Rev. Lett.
124
,
090505
(
2020
).
42.

A similar analysis can also be done for qudits, which is, however, more evolved.

43.

This can, in principle, be done by computing the Choi states of the corresponding channels and then finding a hyperplane that separates them from the stabilizer polytope SP2n.

44.
M. A.
Nielsen
and
I. L.
Chuang
, “
Quantum computation and quantum information: 10th Anniversary Edition
,” (
Cambridge University Press
,
2011
).
You do not currently have access to this content.