The discrete Hamiltonian of Su, Schrieffer, and Heeger (SSH) [Phys. Rev. Lett. 42, 1698–1701 (1979)] is a well-known one-dimensional translation-invariant model in condensed matter physics. The model consists of two atoms per unit cell and describes in-cell and out-of-cell electron-hopping between two sub-lattices. It is among the simplest models exhibiting a non-trivial topological phase; to the SSH Hamiltonian, one can associate a winding number, the Zak phase, which depends on the ratio of hopping coefficients and takes on values 0 and 1 labeling the two distinct phases. We display two homotopically equivalent continuum Hamiltonians whose tight binding limits are SSH models with different topological indices. The topological character of the SSH model is, therefore, an emergent rather than fundamental property, associated with emergent chiral or sublattice symmetry in the tight-binding limit. In order to establish that the tight-binding limit of these continuum Hamiltonians is the SSH model, we extend our recent results on the tight-binding approximation [J. Shapiro and M. I. Weinstein, Adv. Math. 403, 108343 (2022)] to lattices, which depend on the tight-binding asymptotic parameter λ.

1.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
1701
(
1979
).
2.
J.
Shapiro
and
M. I.
Weinstein
, “
Tight-binding reduction and topological equivalence in strong magnetic fields
,”
Adv. Math.
403
,
108343
(
2022
).
3.
G. M.
Graf
and
J.
Shapiro
, “
The bulk-edge correspondence for disordered chiral chains
,”
Commun. Math. Phys.
363
,
829
(
2018
).
4.
I.
Mondragon-Shem
 et al, “
Topological criticality in the chiral-symmetric AIII class at strong disorder
,”
Phys. Rev. Lett.
113
,
046802
(
2014
).
5.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
6.
R.
Carmona
,
A.
Klein
, and
F.
Martinelli
, “
Anderson localization for Bernoulli and other singular potentials
,”
Commun. Math. Phys.
108
(
1
),
41
66
(
1987
).
7.
J.
Shapiro
, “
Incomplete localization for disordered chiral strips
,” arXiv:2108.10978 (
2021
).
8.
F.
Germinet
,
A.
Klein
, and
J.
Schenker
, “
Dynamical delocalization in random Landau Hamiltonians
,”
Ann. Math.
166
,
215
244
(
2007
).
9.
C.
Bourne
,
J.
Kellendonk
, and
A.
Rennie
, “
The K-theoretic bulk–edge correspondence for topological insulators
,”
Ann. Henri Poincare
18
(
5
),
1833
1866
(
2017
).
10.
Y.
Kubota
, “
Controlled topological phases and bulk-edge correspondence
,”
Commun. Math. Phys.
349
(
2
),
493
525
(
2017
).
11.
G. M.
Graf
,
H.
Jud
, and
C.
Tauber
, “
Topology in shallow-water waves: A violation of bulk-edge correspondence
,”
Commun. Math. Phys.
383
(
2
),
731
761
(
2021
).
12.
C.
Tauber
,
P.
Delplace
, and
A.
Venaille
, “
Anomalous bulk-edge correspondence in continuous media
,”
Phys. Rev. Res.
2
,
013147
(
2020
).
13.
B.
Simon
, “
Semiclassical analysis of low lying eigenvalues, II. Tunneling
,”
Ann. Math.
120
(
1
),
89
118
(
1984
).
14.
C. L.
Fefferman
,
J. P.
Lee-Thorp
, and
M. I.
Weinstein
, “
Honeycomb Schrödinger operators in the strong binding regime
,”
Commun. Pure Appl. Math.
71
(
6
),
1178
1270
(
2018
).
15.
B.
Helffer
and
A.
Kachmar
, “
Quantum tunneling in deep potential wells and strong magnetic field revisited
,” arXiv:2208.13030 (
2022
).
16.
C.
Fefferman
,
J.
Shapiro
, and
M. I.
Weinstein
, “
Lower bound on quantum tunneling for strong magnetic fields
,”
SIAM J. Math. Anal.
54
(
1
),
1105
1130
(
2022
).
17.
C.
Fefferman
,
J. P.
Lee-Thorp
, and
M. I.
Weinstein
, “
Topologically protected states in one-dimensional systems
,”
Mem. Am. Math. Soc.
247
(
1173
),
1
(
2017
).
18.
P.
Kuchment
, “
An overview of periodic elliptic operators
,”
Bull. Am. Math. Soc.
53
,
343
414
(
2016
).
19.
M.
Reed
and
B.
Simon
,
I: Functional Analysis
, Methods of Modern Mathematical Physics (
Elsevier Science
,
1981
).
You do not currently have access to this content.