Classical and quantum walks on some finite paths are introduced. It is shown that these walks have explicit solutions given in terms of exceptional Krawtchouk polynomials, and their properties are explored. In particular, fractional revival is shown to take place in the corresponding quantum walks.
REFERENCES
1.
D.
Gómez-Ullate
, N.
Kamran
, and R.
Milson
, “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem
,” J. Math. Anal. Appl.
359
, 352
–367
(2009
).2.
D.
Gómez-Ullate
, N.
Kamran
, and R.
Milson
, “An extension of Bochner’s problem: Exceptional invariant subspaces
,” J. Approx. Theory
162
, 987
–1006
(2010
).3.
C.
Quesne
, “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry
,” J. Phys. A: Math. Theor.
41
, 392001
(2008
).4.
S.
Odake
and R.
Sasaki
, “Infinitely many shape invariant potentials and new orthogonal polynomials
,” Phys. Lett. B
679
, 414
–417
(2009
).5.
A. J.
Durán
, “Exceptional Meixner and Laguerre orthogonal polynomials
,” J. Approx. Theory
184
, 176
–208
(2014
).6.
A. J.
Durán
, “Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials
,” Integral Transforms Spec. Funct.
26
, 357
–376
(2015
).7.
D.
Gómez-Ullate
and R.
Milson
, “Exceptional orthogonal polynomials and rational solutions to Painlevé equations
,” in Orthogonal Polynomials: 2nd AIMS-Volkswagen Stiftung Workshop, Douala, Cameroon, 5–12 October 2018
(Springer
, 2020
), p. 335
.8.
A. J.
Durán
, “Exceptional orthogonal polynomials via Krall discrete polynomials
,” Lectures on Orthogonal Polynomials and Special Functions
(Cambridge University Press
, 2020
), Vol. 464, p. 1
.9.
W.
Feller
, An Introduction to Probability Theory and its Applications
(John Wiley & Sons
, 1968
), Vol. 1.10.
S.
Karlin
and J. L.
McGregor
, “The differential equations of birth-and-death processes, and the Stieltjes moment problem
,” Trans. Am. Math. Soc.
85
, 489
–546
(1957
).11.
M. E. H.
Ismail
, J.
Letessier
, D. R.
Masson
, and G.
Valent
, “Birth and death processes and orthogonal polynomials
,” Orthogonal Polynomials
(Springer
, 1990
), pp. 229
–255
.12.
W.
Schoutens
, Stochastic Processes and Orthogonal Polynomials
(Springer Science & Business Media
, 2012
), Vol. 146.13.
S.
Karlin
and J.
McGregor
, “Linear growth models with many types and multidimensional Hahn polynomials
,” Theory and Application of Special Functions
(Elsevier
, 1975
), pp. 261
–288
.14.
K.
Khare
and H.
Zhou
, “Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions
,” Ann. Appl. Probab.
19
, 737
–777
(2009
).15.
N.
Champagnat
, P.
Diaconis
, and L.
Miclo
, “On Dirichlet eigenvectors for neutral two-dimensional Markov chains
,” Electron. J. Probab.
17
, 1
–41
(2012
).16.
R.
Griffiths
, “Multivariate Krawtchouk polynomials and composition birth and death processes
,” Symmetry
8
, 33
(2016
).17.
L.
Fernández
and M. D.
de la Iglesia
, “Quasi-birth-and-death processes and multivariate orthogonal polynomials
,” J. Math. Anal. Appl.
499
, 125029
(2021
).18.
H.
Dette
and B.
Reuther
, “Some comments on quasi-birth-and-death processes and matrix measures
,” J. Probab. Stat.
2010
, 730543
(2008
).19.
A. F.
Grünbaum
, “QBD processes and matrix orthogonal polynomials: Some new explicit examples
,” in Dagstuhl Seminar Proceedings
(Schloss Dagstuhl-Leibniz-Zentrum für Informatik
, 2008
).20.
F. A.
Grünbaum
, “Random walks and orthogonal polynomials: Some challenges
,” Probability, Geometry and Integrable Systems for Henry McKean’s Seventy-Fifth Birthday
(Cambridge University Press
, 2008
), pp. 241
–260
.21.
A.
Branquinho
, A.
Foulquié-Moreno
, M.
Mañas
, C.
Álvarez-Fernández
, and J. E.
Fernández-Díaz
, “Multiple orthogonal polynomials and random walks
,” arXiv:2103.13715 (2021
).22.
F. A.
Grünbaum
, L.
Vinet
, and A.
Zhedanov
, “Birth and death processes and quantum spin chains
,” J. Math. Phys.
54
, 062101
(2013
).23.
A.
Perez-Leija
, R.
Keil
, A.
Kay
, H.
Moya-Cessa
, S.
Nolte
, L.-C.
Kwek
, B. M.
Rodriguez-Lara
, A.
Szameit
, and D. N.
Christodoulides
, “Coherent quantum transport in photonic lattices
,” Phys. Rev. A
87
, 012309
(2013
).24.
R. J.
Chapman
, M.
Santandrea
, Z.
Huang
, G.
Corrielli
, A.
Crespi
, M. H.
Yung
, R.
Osellame
, and A.
Peruzzo
, “Experimental perfect state transfer of an entangled photonic qubit
,” Nat. Commun.
7
, 11339
(2016
).25.
É.-O.
Bossé
and L.
Vinet
, “Coherent transport in photonic lattices: A survey of recent analytic results
,” SIGMA
13
, 074
(2017
).26.
A.
Kay
, “Perfect, efficient, state transfer and its application as a constructive tool
,” Int. J. Quantum Inf.
08
, 641
–676
(2010
).27.
R.
Robinett
, “Quantum wave packet revivals
,” Phys. Rep.
392
, 1
–119
(2004
).28.
G. M.
Gladwell
, Inverse Problems in Vibration
(Springer
, 2005
), Vol. 119.29.
L.
Vinet
and A.
Zhedanov
, “How to construct spin chains with perfect state transfer
,” Phys. Rev. A
85
, 012323
(2012
).30.
V. X.
Genest
, L.
Vinet
, and A.
Zhedanov
, “Quantum spin chains with fractional revival
,” Ann. Phys.
371
, 348
–367
(2016
).31.
C.
Albanese
, M.
Christandl
, N.
Datta
, and A.
Ekert
, “Mirror inversion of quantum states in linear registers
,” Phys. Rev. Lett.
93
, 230502
(2004
).32.
L.
Vinet
and A.
Zhedanov
, “Dual-1 Hahn polynomials and perfect state transfer
,” J. Phys.: Conf. Ser.
343
, 012125
(2012
).33.
G.
Coutinho
, L.
Vinet
, H.
Zhan
, and A.
Zhedanov
, “Perfect state transfer in a spin chain without mirror symmetry
,” J. Phys. A: Math. Theor.
52
, 455302
(2019
).34.
R.
Koekoek
, P. A.
Lesky
, and R. F.
Swarttouw
, Hypergeometric Orthogonal Polynomials and their Q-Analogues
(Springer Science & Business Media
, 2010
).35.
J.-M.
Lemay
, L.
Vinet
, and A.
Zhedanov
, “An analytic spin chain model with fractional revival
,” J. Phys. A: Math. Theor.
49
, 335302
(2016
).36.
L.
Vinet
and A.
Zhedanov
, “Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer
,” J. Phys. A: Math. Theor.
45
, 265304
(2012
).37.
H.
Miki
, S.
Tsujimoto
, L.
Vinet
, and A.
Zhedanov
, “Quantum-state transfer in a two-dimensional regular spin lattice of triangular shape
,” Phys. Rev. A
85
, 062306
(2012
).38.
H.
Miki
, S.
Tsujimoto
, and L.
Vinet
, “Quantum walks on graphs of the ordered Hamming scheme and spin networks
,” SciPost Phys.
7
, 001
(2019
).39.
H.
Miki
, S.
Tsujimoto
, and L.
Vinet
, “Perfect state transfer in two dimensions and the bivariate dual-Hahn polynomials
,” Prog. Theor. Exp. Phys.
, 053A01
(2022
).40.
H.
Miki
and S.
Tsujimoto
, “A new recurrence formula for generic exceptional orthogonal polynomials
,” J. Math. Phys.
56
, 033502
(2015
).41.
H.
Miki
, S.
Tsujimoto
, and L.
Vinet
, “The single-indexed exceptional Krawtchouk polynomials
,” arXiv:2201.12359 (2022
).42.
C.
Godsil
, “State transfer on graphs
,” Discrete Math.
312
, 129
–147
(2012
).43.
M.
Christandl
, N.
Datta
, A.
Ekert
, and A. J.
Landahl
, “Perfect state transfer in quantum spin networks
,” Phys. Rev. Lett.
92
, 187902
(2004
).44.
M.
Christandl
, N.
Datta
, T. C.
Dorlas
, A.
Ekert
, A.
Kay
, and A. J.
Landahl
, “Perfect transfer of arbitrary states in quantum spin networks
,” Phys. Rev. A
71
, 032312
(2005
).45.
P.-A.
Bernard
, A.
Chan
, É.
Loranger
, C.
Tamon
, and L.
Vinet
, “A graph with fractional revival
,” Phys. Lett. A
382
, 259
–264
(2018
).46.
V.
Eisler
and I.
Peschel
, “Properties of the entanglement Hamiltonian for finite free-fermion chains
,” J. Stat. Mech.: Theory Exp.
, 104001
(2018
).47.
N.
Crampé
, R. I.
Nepomechie
, and L.
Vinet
, “Free-Fermion entanglement and orthogonal polynomials
,” J. Stat. Mech.: Theory Exp.
, 093101
(2019
).48.
F. A.
Grünbaum
, L.
Vinet
, and A.
Zhedanov
, “Algebraic Heun operator and band-time limiting
,” Commun. Math. Phys.
364
, 1041
–1068
(2018
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.