We consider the integrable family of symmetric boundary-driven interacting particle systems that arise from the non-compact XXX Heisenberg model in one dimension with open boundaries. In contrast to the well-known symmetric exclusion process, the number of particles at each site is unbounded. We show that a finite chain of N sites connected at its ends to two reservoirs can be solved exactly, i.e., the factorial moments of the non-equilibrium steady-state can be written in the closed form for each N. The solution relies on probabilistic arguments and techniques inspired by integrable systems. It is obtained in two steps: (i) the introduction of a dual absorbing process reducing the problem to a finite number of particles and (ii) the solution of the dual dynamics exploiting a symmetry obtained from the quantum inverse scattering method. Long-range correlations are computed in the finite-volume system. The exact solution allows us to prove by a direct computation that, in the thermodynamic limit, the system approaches local equilibrium. A by-product of the solution is the algebraic construction of a direct mapping between the non-equilibrium steady state and the equilibrium reversible measure.

1.
T. M.
Liggett
,
Interacting Particle Systems
(
Springer Science & Business Media
,
2012
), Vol. 276.
2.
A.
De Masi
and
E.
Presutti
,
Mathematical Methods for Hydrodynamic Limits
(
Springer
,
2006
).
3.
B.
Derrida
,
M. R.
Evans
,
V.
Hakim
, and
V.
Pasquier
, “
Exact solution of a 1D asymmetric exclusion model using a matrix formulation
,”
J. Phys. A: Math. Gen.
26
(
7
),
1493
1517
(
1993
).
4.
B.
Derrida
, “
Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current
,”
J. Stat. Mech.: Theory Exp.
2007
(
07
),
P07023
; arXiv:cond-mat/0703762v1.
5.
A.
De Masi
and
P.
Ferrari
, “
A remark on the hydrodynamics of the zero-range processes
,”
J. Stat. Phys.
36
(
1–2
),
81
87
(
1984
).
6.
E.
Levine
,
D.
Mukamel
, and
G. M.
Schütz
, “
Zero-range process with open boundaries
,”
J. Stat. Phys.
120
(
5–6
),
759
778
(
2005
); arXiv:cond-mat/0412129 [cond-mat.stat-mech].
7.
A.
De Masi
,
S.
Olla
, and
E.
Presutti
, “
A note on Fick’s law with phase transitions
,”
J. Stat. Phys.
175
(
1
),
203
211
(
2019
); arXiv:1812.05799 [cond-mat.stat-mech].
8.
R.
Frassek
,
C.
Giardinà
, and
J.
Kurchan
, “
Non-compact quantum spin chains as integrable stochastic particle processes
,”
J. Stat. Phys.
180
(
4
),
135
171
(
2020
); arXiv:1904.01048 [math-ph].
9.
L. N.
Lipatov
, “
Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models
,”
J. Exp. Theor. Phys. Lett.
59
,
596
599
(
1994
); arXiv:hep-th/9311037 [hep-th] [Pisma Zh. Eksp. Teor. Fiz. 59, 571 (1994)].
10.
L. D.
Faddeev
and
G. P.
Korchemsky
, “
High-energy QCD as a completely integrable model
,”
Phys. Lett. B
342
,
311
322
(
1995
); arXiv:hep-th/9404173 [hep-th].
11.
S. É.
Derkachov
, “
Baxter’s Q-operator for the homogeneous XXX spin chain
,”
J. Phys. A: Math. Gen.
32
,
5299
5316
(
1999
); arXiv:solv-int/9902015 [solv-int].
12.
N.
Beisert
, “
The complete one loop dilatation operator of N=4 super Yang-Mills theory
,”
Nucl. Phys. B
676
,
3
42
(
2004
); arXiv:hep-th/0307015.
13.
T.
Sasamoto
and
M.
Wadati
, “
One-dimensional asymmetric diffusion model without exclusion
,”
Phys. Rev. E
58
,
4181
4190
(
1998
).
14.
A. M.
Povolotsky
, “
On the integrability of zero-range chipping models with factorized steady states
,”
J. Phys. A: Math. Theor.
46
(
46
),
465205
(
2013
); arXiv:1308.3250 [math-ph].
15.
G.
Barraquand
and
I.
Corwin
, “
The q-Hahn asymmetric exclusion process
,”
Ann. Appl. Probab.
26
(
4
),
2304
2356
(
2016
); arXiv:1501.03445 [math.PR].
16.
J.
Tailleur
,
J.
Kurchan
, and
V.
Lecomte
, “
Mapping out-of-equilibrium into equilibrium in one-dimensional transport models
,”
J. Phys. A: Math. Theor.
41
(
50
),
505001
(
2008
); arXiv:0809.0709 [cond-mat].
17.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
, “
Macroscopic fluctuation theory
,”
Rev. Mod. Phys.
87
(
2
),
593
636
(
2015
); arXiv:1404.6466 [cond-mat.stat-mech].
18.
C.
Kipnis
,
C.
Marchioro
, and
E.
Presutti
, “
Heat flow in an exactly solvable model
,”
J. Stat. Phys.
27
(
1
),
65
74
(
1982
).
19.
G. M.
Schütz
, “
Duality relations for asymmetric exclusion processes
,”
J. Stat. Phys.
86
(
5-6
),
1265
1287
(
1997
).
20.
L. D.
Faddeev
, “
How algebraic Bethe ansatz works for integrable model
,” in
Relativistic Gravitation and Gravitational Radiation
, Proceedings, School of Physics, Les Houches, France, September 26, 1995–October 6, 1995 (
North Holland publishing (Elsevier)
,
1996
), pp.
149
219
; arXiv:hep-th/9605187 [hep-th].
21.
V. E.
Korepin
,
N. M.
Bogoliubov
, and
A. G.
Izergin
,
Quantum Inverse Scattering Method and Correlation Functions
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
Cambridge
,
1993
).
22.
R.
Frassek
,
C.
Giardinà
, and
J.
Kurchan
, “
Duality and hidden equilibrium in transport models
,”
SciPost Phys.
9
,
054
(
2020
); arXiv:2004.12796 [cond-mat.stat-mech].
23.
R.
Frassek
, “
Eigenstates of triangularisable open XXX spin chains and closed-form solutions for the steady state of the open SSEP
,”
J. Stat. Mech.: Theory Exp.
2020
,
053104
; arXiv:1910.13163 [math-ph].
24.
W.
Feller
,
An Introduction to Probability Theory and its Applications
(
John Wiley & Sons
,
2008
), Vol. 2.
25.
Y.
Oono
and
M.
Paniconi
, “
Steady state thermodynamics
,”
Prog. Theor. Phys. Suppl.
130
,
29
44
(
1998
).
26.
S.-i.
Sasa
and
H.
Tasaki
, “
Steady state thermodynamics
,”
J. Stat. Phys.
125
,
125
224
(
2006
); arXiv:cond-mat/0411052 [cond-mat.stat-mech].
27.
B.
Derrida
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Entropy of open lattice systems
,”
J. Stat. Phys.
126
(
4–5
),
1083
1108
(
2007
); arXiv:0704.3742 [cond-mat.stat-mech].
28.
S.
Floreani
,
F.
Redig
, and
F.
Sau
, “
Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations
,”
Annales de l’Institut Henri Pincarem Probabilites et Statistiques
,
58
(
1
),
220
247
(
2022
).
29.
B.
Derrida
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Free energy functional for nonequilibrium systems: An exactly solvable case
,”
Phys. Rev. Lett.
87
(
15
),
150601
(
2001
); arXiv:cond-mat/0105110v2.
30.
G.
Carinci
,
C.
Giardinà
,
C.
Giberti
, and
F.
Redig
, “
Duality for stochastic models of transport
,”
J. Stat. Phys.
152
(
4
),
657
697
(
2013
); arXiv:1212.3154 [math-ph].
31.
G.
Carinci
,
C.
Giardinà
, and
F.
Redig
, “
Consistent particle systems and duality
,” arXiv:1907.10583 [math.PR].
32.
F. C.
Alcaraz
,
M.
Droz
,
M.
Henkel
, and
V.
Rittenberg
, “
Reaction-diffusion processes, critical dynamics and quantum chains
,”
Ann. Phys.
230
,
250
302
(
1994
); arXiv:hep-th/9302112.
33.
R. B.
Stinchcombe
and
G. M.
Schütz
, “
Application of operator algebras to stochastic dynamics and the Heisenberg chain
,”
Phys. Rev. Lett.
75
(
1
),
140
(
1995
).
34.
C. S.
Melo
,
G. A. P.
Ribeiro
, and
M. J.
Martins
, “
Bethe ansatz for the XXX-S chain with non-diagonal open boundaries
,”
Nucl. Phys. B
711
(
3
),
565
603
(
2005
); arXiv:nlin/0411038 [nlin.SI].
35.
J.
de Gier
and
F. H. L.
Essler
, “
Exact spectral gaps of the asymmetric exclusion process with open boundaries
,”
J. Stat. Mech.: Theory Exp.
2006
(
12
),
P12011
; arXiv:cond-mat/0609645 [cond-mat.stat-mech].
36.
N.
Crampe
,
E.
Ragoucy
, and
M.
Vanicat
, “
Integrable approach to simple exclusion processes with boundaries. Review and progress
,”
J. Stat. Mech.:Theory Exp.
2014
(
11
),
P11032
; arXiv:1408.5357 [math-ph].
37.
T.
Sasamoto
and
H.
Spohn
, “
One-dimensional Kardar-Parisi-Zhang equation: An exact solution and its universality
,”
Phys. Rev. Lett.
104
(
23
),
230602
(
2010
); arXiv:1002.1883 [cond-mat.stat-mech].
38.
I.
Corwin
, “
The Kardar–Parisi–Zhang equation and universality class
,”
Random Matrices
01
(
01
),
1130001
(
2012
); arXiv:1106.1596 [math.PR].
39.
A.
Borodin
and
L.
Petrov
, “
Integrable probability: From representation theory to Macdonald processes
,”
Probab. Surv.
11
,
1
58
(
2014
); arXiv:1310.8007.
40.
A. M.
Povolotsky
, “
Untangling of trajectories and integrable systems of interacting particles: Exact results and universal laws
,”
Phys. Part. Nucl.
52
(
2
),
239
273
(
2021
).
41.
A.
Kuniba
,
V. V.
Mangazeev
,
S.
Maruyama
, and
M.
Okado
, “
Stochastic R matrix for Uq(An(1))
,”
Nucl. Phys. B
913
,
248
277
(
2016
); arXiv:1604.08304 [math.QA].
42.
R.
Frassek
, “
The non-compact XXZ spin chain as stochastic particle process
,”
J. Phys. A: Math. Gen.
52
(
33
),
335202
(
2019
); arXiv:1904.02191 [math-ph].
43.
R.
Frassek
, “
Integrable boundaries for the q-Hahn process
,” arXiv:2205.10512 [math-ph].
44.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic Press
,
2014
).
45.
I.
Mező
and
M. E.
Hoffman
, “
Zeros of the digamma function and its Barnes G-function analogue
,”
Integr. Transforms Spec. Funct.
28
(
11
),
846
858
(
2017
).
46.
T.
Holstein
and
H.
Primakoff
, “
Field dependence of the intrinsic domain magnetization of a ferromagnet
,”
Phys. Rev.
58
,
1098
1113
(
1940
).
47.
S. E.
Derkachov
, “
Factorization of the R-matrix. I
,”
J. Math. Sci.
143
,
2773
2790
(
2007
); arXiv:math/0503396.
48.
E. K.
Sklyanin
, “
Boundary conditions for integrable quantum systems
,”
J. Phys. A: Math. Gen.
21
,
2375
3289
(
1988
).
You do not currently have access to this content.