The quantum coupling of two given quantum states denotes the set of bipartite states whose marginal states are these given two states. In this paper, we provide tight inequalities to describe the structure of quantum coupling. These inequalities directly imply that the trace distance between two quantum states cannot be determined by the quantum analog of the earth mover’s distance, thus ruling out the equality version of the quantum Kantorovich–Rubinstein theorem for trace distance even in the finite-dimensional case. In addition, we provide an inequality that can be regarded as a quantum generalization of the Kantorovich–Rubinstein theorem. Then, we generalize our inequalities and apply them to the three tripartite quantum marginal problems. Numerical tests with a three-qubit system show that our criteria are much stronger than the known criteria: the strong subadditivity of entropy and the monogamy of entanglement.

1.
C. A.
Coulson
, “
Present state of molecular structure calculations
,”
Rev. Mod. Phys.
32
,
170
177
(
1960
).
2.
R. H.
Tredgold
, “
Density matrix and the many-body problem
,”
Phys. Rev.
105
,
1421
1423
(
1957
).
3.
A. J.
Coleman
, “
Structure of fermion density matrices
,”
Rev. Mod. Phys.
35
,
668
686
(
1963
).
4.
M. B.
Ruskai
, “
N-representability problem: Conditions on geminals
,”
Phys. Rev.
183
,
129
141
(
1969
).
5.
A. J.
Coleman
and
V. I.
Yukalov
,
Reduced Density Matrices: Coulson’s Challenge
(
Springer Science & Business Media
,
2000
), Vol. 72.
6.
N. R.
Council
 et al.,
Mathematical Challenges from Theoretical/Computational Chemistry
(
National Academies Press
,
1995
).
7.
M. B.
Hastings
, “
Locality in quantum systems
,” in
Quantum Theory from Small to Large Scales
(
Oxford University Press
,
2012
), Vol. 95, pp.
171
212
.
8.
M. M.
Wolf
,
F.
Verstraete
,
M. B.
Hastings
, and
J. I.
Cirac
, “
Area laws in quantum systems: Mutual information and correlations
,”
Phys. Rev. Lett.
100
,
070502
(
2008
).
9.
D.
Perez-García
,
F.
Verstraete
,
M. M.
Wolf
, and
J. I.
Cirac
, “
Matrix product state representations
,”
Quantum Inf. Comput.
7
,
401
430
(
2007
).
10.
F.
Verstraete
,
V.
Murg
, and
J. I.
Cirac
, “
Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems
,”
Adv. Phys.
57
,
143
224
(
2008
).
11.
J. I.
Cirac
and
F.
Verstraete
, “
Renormalization and tensor product states in spin chains and lattices
,”
J. Phys. A: Math. Theor.
42
,
504004
(
2009
).
12.
C.
Schilling
, “
The quantum marginal problem
,” in
Mathematical Results in Quantum Mechanics
(
World Scientific Publishing Co.
,
2014
), pp.
165
176
.
13.
C.
Schilling
,
C. L.
Benavides-Riveros
, and
P.
Vrana
, “
Reconstructing quantum states from single-party information
,”
Phys. Rev. A
96
,
052312
(
2017
).
14.
J.
Cioslowski
,
Many-Electron Densities and Reduced Density Matrices
(
Springer Science & Business Media
,
2000
).
15.
D. A.
Mazziotti
, “
Quantum chemistry without wave functions: Two-electron reduced density matrices
,”
Acc. Chem. Res.
39
,
207
215
(
2006
).
16.
Y.-K.
Liu
, “
Consistency of local density matrices is qma-complete
,” in
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
, edited by
J.
Díaz
,
K.
Jansen
,
J. D. P.
Rolim
, and
U.
Zwick
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
438
449
.
17.
Y.-K.
Liu
,
M.
Christandl
, and
F.
Verstraete
, “
Quantum computational complexity of the N-representability problem: QMA complete
,”
Phys. Rev. Lett.
98
,
110503
(
2007
).
18.
A.
Klyachko
, “
Quantum marginal problem and representations of the symmetric group
,” arXiv:quant-ph/0409113 (
2004
).
19.
S.
Daftuar
and
P.
Hayden
, “
Quantum state transformations and the Schubert calculus
,”
Ann. Phys.
315
,
80
122
(
2005
).
20.
A. A.
Klyachko
, “
Quantum marginal problem and N-representability
,”
J. Phys.: Conf. Ser.
36
,
72
86
(
2006
).
21.
M.
Christandl
and
G.
Mitchison
, “
The spectra of quantum states and the Kronecker coefficients of the symmetric group
,”
Commun. Math. Phys.
261
,
789
797
(
2006
).
22.
A.
Higuchi
,
A.
Sudbery
, and
J.
Szulc
, “
One-qubit reduced states of a pure many-qubit state: Polygon inequalities
,”
Phys. Rev. Lett.
90
,
107902
(
2003
).
23.
N.
Yu
, “
Multipartite W-type state is determined by its single-particle reduced density matrices among all W-type states
,”
Phys. Rev. A
87
,
052310
(
2013
).
24.
M.
Christandl
,
B.
Doran
,
S.
Kousidis
, and
M.
Walter
, “
Eigenvalue distributions of reduced density matrices
,”
Commun. Math. Phys.
332
,
1
52
(
2014
).
25.
S.
Bravyi
, “
Requirements for copatibility between local and multipartite quantum states
,”
Quantum Inf. Comput.
4
,
12
26
(
2004
).
26.
J.
Chen
,
Z.
Ji
,
D.
Kribs
,
N.
Lütkenhaus
, and
B.
Zeng
, “
Symmetric extension of two-qubit states
,”
Phys. Rev. A
90
,
032318
(
2014
).
27.
T. J.
Osborne
, “
Entropic bounds for the quantum marginal problem
,” arXiv:0806.2962 [quant-ph] (
2008
).
28.
E. A.
Carlen
,
J. L.
Lebowitz
, and
E. H.
Lieb
, “
On an extension problem for density matrices
,”
J. Math. Phys.
54
,
062103
(
2013
).
29.
G.
Monge
,
Mémoire sur la Théorie des Déblais et des Remblais
(
Histoire de l’Académie Royale des Sciences de Paris
,
1781
), pp.
666
704
.
30.
L. V.
Kantorovich
, “
On the translocation of masses
,”
C. R. Dokl. Acad. Sci. URSS
37
,
199
201
(
1942
).
31.
L. V.
Kantorovich
and
S. G.
Rubinshtein
, “
On a space of totally additive functions
,”
Vestn. St. Petersburg Univ.: Math.
13
,
52
59
(
1958
).
32.
L. V.
Kantorovich
and
G. P.
Akilov
, “
VIII—The weak topology in a banach space
,” in
Functional Analysis
, 2nd ed., edited by
L.
Kantorovich
and
G.
Akilov
(
Pergamon
,
1982
), pp.
215
237
.
33.
C.
Rouzé
and
N.
Datta
, “
Concentration of quantum states from quantum functional and transportation cost inequalities
,”
J. Math. Phys.
60
,
012202
(
2019
).
34.
K.
Zyczkowski
and
W.
Slomczynski
, “
The Monge distance between quantum states
,”
J. Phys. A: Math. Gen.
31
,
9095
9104
(
1998
).
35.
K.
Zyczkowski
and
W.
Slomczynski
, “
The Monge metric on the sphere and geometry of quantum states
,”
J. Phys. A: Math. Gen.
34
,
6689
6722
(
2001
).
36.
M. A.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2002
).
37.
A.
Uhlmann
, “
The ‘transition probability’ in the state space of a *-algebra
,”
Rep. Math. Phys.
9
,
273
279
(
1976
).
38.
K.
Parthasarathy
, “
Extremal quantum states in coupled systems
,”
Ann. Inst. Henri Poincare
41
,
257
268
(
2005
).
39.
O.
Rudolph
, “
On extremal quantum states of composite systems with fixed marginals
,”
J. Math. Phys.
45
,
4035
4041
(
2004
).
40.
A.
Winter
, “
Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints
,”
Commun. Math. Phys.
347
,
291
313
(
2016
).
41.
L.
Zhou
,
S.
Ying
,
N.
Yu
, and
M.
Ying
, “
Strassen’s theorem for quantum couplings
,”
Theor. Comput. Sci.
802
,
67
76
(
2020
).
42.
S.
Friedland
,
J.
Ge
, and
L.
Zhi
, “
Quantum strassen’s theorem
,” in
Infinite Dimensional Analysis, Quantum Probability and Related Topics
(
World Scientific Publishing Co.
,
2020
), Vol. 23, p.
2050020
.
43.
D. A.
Edwards
, “
On the Kantorovich–Rubinstein theorem
,”
Expositiones Mathematicae
29
,
387
398
(
2011
).
44.
T.
Lindvall
,
Lectures on the Coupling Method
(
Courier Corporation
,
2002
).
45.
D. A.
Levin
,
Y.
Peres
, and
E. L.
Wilmer
,
Markov Chains and Mixing Times
(
American Mathematical Society
,
Providence
,
2009
).
46.
D.
Aldous
, “
Random walks on finite groups and rapidly mixing Markov chains
,” in
Séminaire de Probabilités XVII 1981/82
(
Springer
,
1983
), pp.
243
297
.
47.
E. H.
Lieb
and
M. B.
Ruskai
, “
A fundamental property of quantum-mechanical entropy
,”
Phys. Rev. Lett.
30
,
434
436
(
1973
).
48.
E. H.
Lieb
, “
Some convexity and subadditivity properties of entropy
,”
Bull. Am. Math. Soc.
81
,
1
13
(
1975
).
49.
Y.
Li
and
D.
Unruh
, “
Quantum relational hoare logic with expectations
,” in
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), Leibniz International Proceedings in Informatics (LIPIcs)
, edited by
N.
Bansal
,
E.
Merelli
, and
J.
Worrell
(
Schloss Dagstuhl–Leibniz-Zentrum für Informatik
,
Dagstuhl, Germany
,
2021
), Vol. 198, pp.
136:1
136:20
.
50.
D.
Yang
,
M.
Horodecki
,
R.
Horodecki
, and
B.
Synak-Radtke
, “
Irreversibility for all bound entangled states
,”
Phys. Rev. Lett.
95
,
190501
(
2005
).
51.
S.
Chakrabarti
,
Y.
Huang
,
T.
Li
,
S.
Feizi
, and
X.
Wu
, “
Quantum wasserstein gans
,” in
Proceedings of the 33rd International Conference on Neural Information Processing Systems
(
Curran Associates, Inc.
,
Red Hook, NY
,
2019
).
52.
S.
Friedland
,
M.
Eckstein
,
S.
Cole
, and
K.
Życzkowski
, “
Quantum Monge-Kantorovich problem and transport distance between density matrices
,”
Phys. Rev. Lett.
129
(
11
),
110402
(
2022
).
53.
S.
Cole
,
M.
Eckstein
,
S.
Friedland
, and
K.
Życzkowski
, “
Quantum optimal transport
,” arXiv:2105.06922 [quant-ph] (
2021
).
54.
V.
Coffman
,
J.
Kundu
, and
W. K.
Wootters
, “
Distributed entanglement
,”
Phys. Rev. A
61
,
052306
(
2000
).
55.
M.
Grant
and
S.
Boyd
, CVX: Matlab software for disciplined convex programming, version 2.1, http://cvxr.com/cvx,
2014
.
56.
M. C.
Grant
and
S. P.
Boyd
, “
Graph implementations for nonsmooth convex programs
,” in
Recent Advances in Learning and Control
, edited by
V. D.
Blondel
,
S. P.
Boyd
, and
H.
Kimura
(
Springer
,
London
,
2008
), pp.
95
110
.
57.
N.
Johnston
,
A.
Cosentino
, and
V.
Russo
, Qetlab: Qetlab v0.9,
2016
.
58.
N.
Yu
,
R.
Duan
, and
Q.
Xu
, “
Bounds on the distance between a unital quantum channel and the convex hull of unitary channels
,”
IEEE Trans. Inf. Theory
63
,
1299
1310
(
2017
).
59.
B.
Kümmerer
, “
Construction and structure of Markov dilations on W*-algebras
,” Ph.D. thesis,
Habilitationsschrift
,
Tübingen
,
1986
.
60.
B.
Kümmerer
and
H.
Maassen
, “
The essentially commutative dilations of dynamical semigroups on Mn
,”
Commun. Math. Phys.
109
,
1
22
(
1987
).
61.
L. J.
Landau
and
R. F.
Streater
, “
On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras
,”
Linear Algebra Appl.
193
,
107
127
(
1993
).
62.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
(
Springer Science & Business Media
,
2013
), Vol. 129.
63.
S.
Peleg
,
M.
Werman
, and
H.
Rom
, “
A unified approach to the change of resolution: Space and gray-level
,”
IEEE Trans. Pattern Anal. Mach. Intell.
11
,
739
742
(
1989
).
64.
N.
Courty
,
R.
Flamary
,
D.
Tuia
, and
A.
Rakotomamonjy
, “
Optimal transport for domain adaptation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
39
,
1853
1865
(
2017
).
65.
G.
Peyré
,
M.
Cuturi
 et al., “
Computational optimal transport: With applications to data science
,”
Found. Trends Mach. Learn.
11
,
355
607
(
2019
).
66.
G.
Barthe
,
T.
Espitau
,
B.
Grégoire
,
J.
Hsu
, and
P.-Y.
Strub
, “
Proving expected sensitivity of probabilistic programs
,”
Proc. ACM Program. Languages
2
,
57
(
2017
).
67.
M.
Arjovsky
,
S.
Chintala
, and
L.
Bottou
, “
Wasserstein generative adversarial networks
,” in
Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research
, edited by
D.
Precup
and
Y. W.
Teh
(
PMLR
,
2017
), Vol. 70, pp.
214
223
.
You do not currently have access to this content.