The Birkhoff polytope Bd consisting of all bistochastic matrices of order d assists researchers from many areas, including combinatorics, statistical physics, and quantum information. Its subset Ud of unistochastic matrices, determined by squared moduli of unitary matrices, is of particular importance for quantum theory as classical dynamical systems described by unistochastic transition matrices can be quantized. In order to investigate the problem of unistochasticity, we introduce the set Ld of bracelet matrices that forms a subset of Bd, but a superset of Ud. We prove that for every dimension d, this set contains the set of factorizable bistochastic matrices Fd and is closed under matrix multiplication by elements of Fd. Moreover, we prove that both Ld and Fd are star-shaped with respect to the flat matrix. We also analyze the set of d × d unistochastic matrices arising from circulant unitary matrices and show that their spectra lie inside d-hypocycloids on the complex plane. Finally, applying our results to small dimensions, we fully characterize the set of circulant unistochastic matrices of order d ≤ 4 and prove that such matrices form a monoid for d = 3.

1.
R.
Bhatia
,
Matrix Analysis
(
Springer Science & Business Media
,
2013
), Vol. 169.
2.
B. L.
van der Waerden
,
Jahresber. Dtsch. Math. Ver.
35
,
117
(
1926
).
3.
I.
Bengtsson
, arXiv:quant-ph/0403088 (
2004
), proceedings of Second Vaxjo Conference of Quantum Theory.
4.
P.
Pakonski
,
K.
Życzkowski
, and
M.
Kus
,
J. Phys. A: Math. Gen.
34
,
9303
(
2001
).
5.
P.
Pakoński
,
G.
Tanner
, and
K.
Życzkowski
,
J. Stat. Phys.
111
,
1331
(
2003
).
6.
A.
Ambainis
,
Int. J. Quantum Inf.
01
,
507
(
2003
).
7.
D. A.
Meyer
,
J. Stat. Phys.
85
,
551
574
(
1996
).
8.
Y.
Aharonov
,
L.
Davidovich
, and
N.
Zagury
,
Phys. Rev. A
48
,
1687
(
1993
).
9.
K.
Korzekwa
,
S.
Czachórski
,
Z.
Puchała
, and
K.
Życzkowski
,
Phys. Rev. X
11
,
021019
(
2021
).
10.
I. I.
Bigi
and
A. I.
Sanda
,
CP Violation
, 2nd ed. (
Cambridge University Press
,
2009
).
11.
P.
Diţă
,
J. Math. Phys.
47
,
083510
(
2006
).
12.
C.
Jarlskog
,
Phys. Rev. Lett.
55
,
1039
(
1985
).
13.
G.
Mennessier
and
J.
Nuyts
,
J. Math. Phys.
15
,
1525
(
1974
).
14.
A.
Landé
,
Br. J. Philos. Sci.
10
,
16
(
1959
).
15.
C.
Rovelli
,
Int. J. Theor. Phys.
35
,
1637
1678
(
1996
).
16.
K.
Korzekwa
and
M.
Lostaglio
, arXiv:2005.02403 (
2020
).
17.
Y.-T.
Poon
and
N.-K.
Tsing
,
Linear Multilinear Algebra
21
,
253
(
1987
).
18.
I.
Bengtsson
,
Å.
Ericsson
,
M.
Kuś
,
W.
Tadej
, and
K.
Życzkowski
,
Commun. Math. Phys.
259
,
307
(
2005
).
19.
C. S.
Chan
and
D. P.
Robbins
,
Exp. Math.
8
,
291
(
1999
).
20.
J. A.
De Loera
,
F.
Liu
, and
R.
Yoshida
,
J. Algebraic Combinatorics
30
,
113
(
2009
).
21.
E. R.
Canfield
and
B. D.
McKay
,
Online J. Anal. Combinatorics
4
,
4
(
2009
).
22.
R.
Sinkhorn
,
Ann. Math. Stat.
35
,
876
(
1964
).
23.
V.
Cappellini
,
H.-J.
Sommers
,
W.
Bruzda
, and
K.
Życzkowski
,
J. Phys. A: Math. Theor.
42
,
365209
(
2009
).
24.
M.
Marcus
,
K.
Kidman
, and
M.
Sandy
,
Linear Multilinear Algebra
15
,
331
(
1984
).
25.
M.
Lostaglio
,
Á. M.
Alhambra
, and
C.
Perry
,
Quantum
2
,
52
(
2018
).
26.
A.
Karabegov
,
AIP Conf. Proc.
1079
,
39
(
2008
).
27.
Y.-H.
Au-Yeung
and
C.-M.
Cheng
,
Linear Algebra Appl.
150
,
242
(
1991
).
28.
H.
Nakazato
,
Nihonkai Math. J.
7
,
83
(
1996
).
29.
C.
Dunkl
and
K.
Życzkowski
,
J. Math. Phys.
50
,
123521
(
2009
).
30.
P. J.
Davis
,
Circulant Matrices
(
Wiley-Interscience Publication
,
1979
).
31.
J. R.
Bolaños-Servin
and
R.
Quezada
,
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
16
,
1350016
(
2013
).
32.
J. R.
Bolaños-Servin
and
R.
Carbone
,
Open Syst. Inf. Dyn.
21
,
1450007
(
2014
).
33.
J. R.
Bolaños-Servin
,
R.
Carbone
, and
R.
Quezada
,
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
22
,
1950017
(
2019
).
34.
A. C.
Smith
,
Mathematics and Computing
(
Springer
,
2015
), pp.
239
250
.
35.
Y.-H.
Au-Yeung
and
Y.-T.
Poon
,
Linear Algebra Appl.
27
,
69
(
1979
).
36.
C.
Jarlskog
and
R.
Stora
,
Phys. Lett. B
208
,
268
(
1988
).
37.
J.
Watrous
,
The Theory of Quantum Information
(
Cambridge University Press
,
2018
).
38.
U.
Jaekel
,
Procedia Comput. Sci.
4
,
1403
(
2011
).
39.
I.
Pak
,
Ann. Combinatorics
4
,
83
(
2000
).
40.
G.
Rajchel
,
A.
Gąsiorowski
, and
K.
Życzkowski
,
Math. Comput. Sci.
12
,
473
(
2018
).
41.
K.
Zyczkowski
,
M.
Kus
,
W.
Somczyski
, and
H.-J.
Sommers
,
J. Phys. A: Math. Gen.
36
,
3425
(
2003
).
42.
F. I.
Karpelevich
,
Izv. Akad. Nauk SSSR Ser. Math.
15
,
361
(
1951
).
43.
D. Ž.
Djokovič
,
Linear Algebra Appl.
142
,
173
(
1990
).
44.
N.
Kaiser
,
J. Phys. A: Math. Theor.
39
,
15287
(
2006
).
45.
R. T.
Farouki
,
H. P.
Moon
, and
B.
Ravani
,
Geometriae Dedicata
85
,
283
(
2001
).
You do not currently have access to this content.