We associate a deformation of the Heisenberg algebra with the suitably normalized Yang R-matrix, and we investigate its properties. Moreover, we construct new examples of quantum vertex algebras, which possess the same representation theory as the aforementioned deformed Heisenberg algebra.

1.
A. A.
Belavin
,
A. M.
Polyakov
, and
A. B.
Zamolodchikov
, “
Infinite conformal symmetry in two-dimensional quantum field theory
,”
Nucl. Phys. B
241
,
333
380
(
1984
).
2.
R. E.
Borcherds
, “
Vertex algebras, Kac–Moody algebras, and the monster
,”
Proc. Natl. Acad. Sci. U. S. A.
83
,
3068
3071
(
1986
).
3.
A.
De Sole
,
M.
Gardini
, and
V. G.
Kac
, “
On the structure of quantum vertex algebras
,”
J. Math. Phys.
61
,
011701
(
2020
); arXiv:1906.05051 [math.QA].
4.
P.
Etingof
and
D.
Kazhdan
, “
Quantization of Lie bialgebras, V
,”
Sel. Math.
6
,
105
130
(
2000
); arXiv:math/9808121 [math.QA].
5.
E.
Frenkel
and
D.
Ben-Zvi
,
Vertex Algebras, Algebraic Curves
, 2nd ed., Mathematical Surveys and Monographs Vol. 88 (
American Mathematical Society
,
Providence, RI
,
2004
).
6.
I. B.
Frenkel
and
V. G.
Kac
, “
Basic representations of affine Lie algebras and dual resonance models
,”
Invent. Math.
62
,
23
66
(
1980
).
7.
I.
Frenkel
,
J.
Lepowsky
, and
A.
Meurman
,
Vertex Operator Algebras and the Monster
, Pure and Applied Mathematics Vol. 134 (
Academic Press, Inc.
,
Boston, MA
,
1988
).
8.
I. B.
Frenkel
and
Y.
Zhu
, “
Vertex operator algebras associated to representations of affine and Virasoro algebras
,”
Duke Math. J.
66
,
123
168
(
1992
).
9.
V.
Kac
,
Vertex Algebras for Beginners
, University Lecture Series Vol. 10 (
American Mathematical Society
,
Providence, RI
,
1997
).
10.
C.
Kassel
,
Quantum Groups
, Graduate Texts in Mathematics Vol. 155 (
Springer-Verlag
,
1995
).
11.
S.
Kožić
, “
Quantum current algebras associated with rational R-matrix
,”
Adv. Math.
351
,
1072
1104
(
2019
); arXiv:1801.03543 [math.QA].
12.
J.
Lepowsky
and
H.-S.
Li
,
Introduction to Vertex Operator Algebras and Their Representations
, Progress in Mathematics Vol. 227 (
Birkhäuser
,
Boston
,
2003
).
13.
J.
Lepowsky
and
R. L.
Wilson
, “
Construction of the affine Lie algebra A1(1)
,”
Commun. Math. Phys.
62
,
43
53
(
1978
).
14.
H.
Li
, “
ℏ-adic quantum vertex algebras and their modules
,”
Commun. Math. Phys.
296
,
475
523
(
2010
); arXiv:0812.3156 [math.QA].
15.
H.
Li
, “
Associating quantum vertex algebras to deformed Heisenberg Lie algebras
,”
Front. Math. China
6
,
707
730
(
2011
); arXiv:1106.3241 [math.QA].
16.
B. H.
Lian
, “
On the classification of simple vertex operator algebras
,”
Commun. Math. Phys.
163
,
307
357
(
1994
).
17.
N. Y.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
, “
Central extensions of quantum current groups
,”
Lett. Math. Phys.
19
,
133
142
(
1990
).
18.
G.
Segal
, “
Unitary representations of some infinite-dimensional groups
,”
Commun. Math. Phys.
80
,
301
342
(
1981
).
You do not currently have access to this content.