From the Lax system on a time-space scale, we derive Sine-Gordon, Burgers, and some other nonlinear equations. From the simplified two- and three-dimensional Lax systems on a time-space scale with variable nonvanishing graininess, we derive Korteweg–de Vries, Boussinesq, Krichever–Novikov, Hirota–Miwa, and other nonlinear equations on a time-space scale with soliton solutions. We also construct multi-soliton solutions for some equations by the direct method using the exponential functions on a time-space scale.

1.
D.
Anderson
,
J.
Bullock
,
L.
Erbe
,
A.
Peterson
, and
H.
Tran
, “
Nabla dynamic equations on time scales
,”
Panam. Math. J.
13
(
1
),
1
47
(
2003
).
2.
M.
Bohner
and
A.
Peterson
,
Dynamic Equations on Time Scales: An Introduction with Applications
(
Birkhäuser
,
Boston
,
2001
).
3.
M.
Bohner
and
G. S.
Guseinov
, “
Partial differentiation on time scales
,”
Dyn. Syst. Appl.
13
,
351
379
(
2004
).
4.
J. L.
Cieslinski
, “
Pseudospherical surfaces on time scales: A geometric definition and the spectral approach
,”
J. Phys. A: Math. Theor.
40
,
12525
12538
(
2007
).
5.
J. L.
Cieslinski
,
T.
Nikiciuk
, and
K.
Waskiewicz
, “
The sine-Gordon equation on time scales
,”
J. Math. Anal. Appl.
423
(
2
),
1219
1230
(
2015
).
6.
J. L.
Cieslinski
, “
New definitions of exponential, hyperbolic and trigonometric functions on time scales
,”
J. Math. Anal. Appl.
388
,
8
22
(
2012
).
7.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
, “
Method for solving the Korteweg–de Vries equation
,”
Phys. Rev. Lett.
19
(
19
),
1095
1097
(
1967
).
8.
M.
Gürses
,
G. S.
Guseinov
, and
B.
Silindir
, “
Integrable equations on time scales
,”
J. Math. Phys.
46
,
113510
(
2005
).
9.
S.
Hilger
, “
Analysis on measure chains—A unified approach to continuous and discrete calculus
,”
Results Math.
18
,
18
56
(
1990
).
10.
R.
Hirota
, “
Nonlinear partial difference equations. I. A difference analogue of the Korteweg de Vries equation
,”
J. Phys. Soc. Jpn.
43
,
1424
1433
(
1977
).
11.
R.
Hirota
, “
Nonlinear partial difference equations III: Discrete sine-Gordon equation
,”
J. Phys. Soc. Jpn.
43
(
6
),
2079
(
1977
).
12.
R.
Hirota
, “
Discrete analogue of a generalized Toda equation
,”
J. Phys. Soc. Jpn.
50
,
3785
3791
(
1981
).
13.
G.
Hovhannisyan
, “
Ablowitz-Ladik hierarchy of integrable equations on a time-space scale
,”
J. Math. Phys.
55
(
10
),
102701
(
2014
).
14.
G.
Hovhannisyan
,
L.
Bonecutter
, and
A.
Mizer
, “
On Burger’s equation on a time-space scale
,”
Adv. Differ. Equations
2015
(
1
),
289
.
15.
G.
Hovhannisyan
, “
3 soliton solution to Sin-Gordon equation on a space scale
,”
J. Math. Phys.
60
,
103502
(
2019
).
16.
G.
Hovhannisyan
, “
Schwarzian derivative and Ermakov equation on a time scale
,”
J. Math. Phys.
59
,
061502
(
2018
).
17.
I. M.
Krichever
and
S. P.
Novikov
, “
Holomorphic bundles over algebraic curves and nonlinear equations
,”
Russ. Math. Surv.
35
,
53
79
(
1980
).
18.
P. D.
Lax
, “
Integrals of nonlinear equations of evolution and solitary waves
,”
Commun. Pure Appl. Math.
21
(
5
),
467
490
(
1968
).
19.
T.
Miwa
, “
On Hirota’s difference equations
,”
Proc. Jpn. Acad., Ser. A
58
,
9
12
(
1982
).
20.
F. W.
Nijhoff
,
G. R. W.
Quispel
, and
H. W.
Capel
, “
Direct linearization of nonlinear difference-difference equations
,”
Phys. Lett. A
97
,
125
128
(
1983
).
21.
F.
Nijhoff
and
H.
Capel
, “
Discrete Korteweg–de Vries equation
,”
Acta Appl. Math.
39
,
133
158
(
1995
).
22.
G. R. W.
Quispel
,
F. W.
Nijhoff
, and
H. W.
Capel
, “
Linearization of the Boussinesq equation and of the modified Boussinesq equation
,”
Phys. Lett. A
91
,
143
145
(
1982
).
23.
M.
Toda
, “
Vibration of a chain with a non-linear interaction
,”
J. Phys. Soc. Jpn.
22
(
2
),
431
436
(
1967
).
You do not currently have access to this content.