From the Lax system on a time-space scale, we derive Sine-Gordon, Burgers, and some other nonlinear equations. From the simplified two- and three-dimensional Lax systems on a time-space scale with variable nonvanishing graininess, we derive Korteweg–de Vries, Boussinesq, Krichever–Novikov, Hirota–Miwa, and other nonlinear equations on a time-space scale with soliton solutions. We also construct multi-soliton solutions for some equations by the direct method using the exponential functions on a time-space scale.
REFERENCES
1.
D.
Anderson
, J.
Bullock
, L.
Erbe
, A.
Peterson
, and H.
Tran
, “Nabla dynamic equations on time scales
,” Panam. Math. J.
13
(1
), 1
–47
(2003
).2.
M.
Bohner
and A.
Peterson
, Dynamic Equations on Time Scales: An Introduction with Applications
(Birkhäuser
, Boston
, 2001
).3.
M.
Bohner
and G. S.
Guseinov
, “Partial differentiation on time scales
,” Dyn. Syst. Appl.
13
, 351
–379
(2004
).4.
J. L.
Cieslinski
, “Pseudospherical surfaces on time scales: A geometric definition and the spectral approach
,” J. Phys. A: Math. Theor.
40
, 12525
–12538
(2007
).5.
J. L.
Cieslinski
, T.
Nikiciuk
, and K.
Waskiewicz
, “The sine-Gordon equation on time scales
,” J. Math. Anal. Appl.
423
(2
), 1219
–1230
(2015
).6.
J. L.
Cieslinski
, “New definitions of exponential, hyperbolic and trigonometric functions on time scales
,” J. Math. Anal. Appl.
388
, 8
–22
(2012
).7.
C. S.
Gardner
, J. M.
Greene
, M. D.
Kruskal
, and R. M.
Miura
, “Method for solving the Korteweg–de Vries equation
,” Phys. Rev. Lett.
19
(19
), 1095
–1097
(1967
).8.
M.
Gürses
, G. S.
Guseinov
, and B.
Silindir
, “Integrable equations on time scales
,” J. Math. Phys.
46
, 113510
(2005
).9.
S.
Hilger
, “Analysis on measure chains—A unified approach to continuous and discrete calculus
,” Results Math.
18
, 18
–56
(1990
).10.
R.
Hirota
, “Nonlinear partial difference equations. I. A difference analogue of the Korteweg de Vries equation
,” J. Phys. Soc. Jpn.
43
, 1424
–1433
(1977
).11.
R.
Hirota
, “Nonlinear partial difference equations III: Discrete sine-Gordon equation
,” J. Phys. Soc. Jpn.
43
(6
), 2079
(1977
).12.
R.
Hirota
, “Discrete analogue of a generalized Toda equation
,” J. Phys. Soc. Jpn.
50
, 3785
–3791
(1981
).13.
G.
Hovhannisyan
, “Ablowitz-Ladik hierarchy of integrable equations on a time-space scale
,” J. Math. Phys.
55
(10
), 102701
(2014
).14.
G.
Hovhannisyan
, L.
Bonecutter
, and A.
Mizer
, “On Burger’s equation on a time-space scale
,” Adv. Differ. Equations
2015
(1
), 289
.15.
G.
Hovhannisyan
, “3 soliton solution to Sin-Gordon equation on a space scale
,” J. Math. Phys.
60
, 103502
(2019
).16.
G.
Hovhannisyan
, “Schwarzian derivative and Ermakov equation on a time scale
,” J. Math. Phys.
59
, 061502
(2018
).17.
I. M.
Krichever
and S. P.
Novikov
, “Holomorphic bundles over algebraic curves and nonlinear equations
,” Russ. Math. Surv.
35
, 53
–79
(1980
).18.
P. D.
Lax
, “Integrals of nonlinear equations of evolution and solitary waves
,” Commun. Pure Appl. Math.
21
(5
), 467
–490
(1968
).19.
T.
Miwa
, “On Hirota’s difference equations
,” Proc. Jpn. Acad., Ser. A
58
, 9
–12
(1982
).20.
F. W.
Nijhoff
, G. R. W.
Quispel
, and H. W.
Capel
, “Direct linearization of nonlinear difference-difference equations
,” Phys. Lett. A
97
, 125
–128
(1983
).21.
F.
Nijhoff
and H.
Capel
, “Discrete Korteweg–de Vries equation
,” Acta Appl. Math.
39
, 133
–158
(1995
).22.
G. R. W.
Quispel
, F. W.
Nijhoff
, and H. W.
Capel
, “Linearization of the Boussinesq equation and of the modified Boussinesq equation
,” Phys. Lett. A
91
, 143
–145
(1982
).23.
M.
Toda
, “Vibration of a chain with a non-linear interaction
,” J. Phys. Soc. Jpn.
22
(2
), 431
–436
(1967
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.