It is well known that tensor decompositions show separations, that is, constraints on local terms (such as positivity) may entail an arbitrarily high cost in their representation. Here, we show that many of these separations disappear in the approximate case. Specifically, for every approximation error ɛ and norm, we define the approximate rank as the minimum rank of an element in the ɛ-ball with respect to that norm. For positive semidefinite matrices, we show that the separations between rank, purification rank, and separable rank disappear for a large class of Schatten p-norms. For non-negative tensors, we show that the separations between rank, positive semidefinite rank, and non-negative rank disappear for all p-norms with p > 1. For the trace norm (p = 1), we obtain upper bounds that depend on the ambient dimension. We also provide a deterministic algorithm to obtain the approximate decomposition attaining our bounds. Our main tool is an approximate version of the Carathéodory theorem. Our results imply that many separations are not robust under small perturbations of the tensor, with implications in quantum many-body systems and communication complexity.

1.
J.
Brachat
,
P.
Comon
,
B.
Mourrain
, and
E.
Tsigaridas
, “
Symmetric tensor decomposition
,”
Linear Algebra Appl.
433
,
1851
(
2010
).
2.
W.
Bruzda
,
S.
Friedland
, and
K.
Życzkowski
, “
Tensor rank and entanglement of pure quantum states
,” arXiv:1912.06854 (
2019
).
3.
G.
De las Cuevas
,
M.
Hoogsteder Riera
, and
T.
Netzer
, “
Tensor decompositions on simplicial complexes with invariance
,” arXiv:1909.01737 (
2019
).
4.
G.
De las Cuevas
and
T.
Netzer
, “
Mixed states in one spatial dimension: Decompositions and correspondence with nonnegative matrices
,”
J. Math. Phys.
61
,
041901
(
2020
).
5.
G.
De las Cuevas
,
N.
Schuch
,
D.
Pérez-García
, and
J.
Ignacio Cirac
, “
Purifications of multipartite states: Limitations and constructive methods
,”
New J. Phys.
15
,
123021
(
2013
).
6.
V.
de Silva
and
L.-H.
Lim
, “
Tensor rank and the ill-posedness of the best low-rank approximation problem
,”
SIAM J. Matrix Anal. Appl.
30
,
1084
(
2008
).
7.
H.
Fawzi
,
J.
Gouveia
,
P. A.
Parrilo
,
R. Z.
Robinson
, and
R. R.
Thomas
, “
Positive semidefinite rank
,”
Math. Program.
153
,
133
(
2015
).
8.
S.
Fiorini
,
S.
Massar
,
S.
Pokutta
,
H. R.
Tiwary
, and
R.
de Wolf
, “
Linear vs semidefinite extended formulations: Exponential separation and strong lower bounds
,” in
STOC’12: Proceedings of the 44th Symposium on Theory of Computing
(
Association for Computing Machinery, New York
,
2012
), Vol. 95.
9.
I.
Glasser
,
R.
Sweke
,
N.
Pancotti
,
J.
Eisert
, and
J. I.
Cirac
, “
Expressive power of tensor-network factorizations for probabilistic modeling, with applications from hidden Markov models to quantum machine learning
,” in
Proceedings of the Neural Information Processing Systems Conference
(
published online
,
2019
), Vol. 32.
10.
J.
Gouveia
,
P. A.
Parrilo
, and
R. R.
Thomas
, “
Lifts of convex sets and cone factorizations
,”
Math. Oper. Res.
38
,
248
(
2013
).
11.
N. J.
Higham
,
Functions of Matrices
(
SIAM
,
Philadelphia
,
2008
).
12.
G. M.
Ivanov
, “
Approximate Caratheodory’s theorem in uniformly smooth Banach spaces
,”
Discrete Comput. Geom.
66
,
273
(
2019
).
13.
R.
Jain
,
Y.
Shi
,
Z.
Wei
, and
S.
Zhang
, “
Efficient protocols for generating bipartite classical distributions and quantum states
,”
IEEE Trans. Inf. Theory
59
,
5171
(
2013
).
14.
J. G.
Jarkovsky
,
A.
Molnar
,
N.
Schuch
, and
J. I.
Cirac
, “
Efficient description of many-body systems with matrix product density operators
,”
PRX Quantum
1
,
010304
(
2020
).
15.
A.
Klingler
,
T.
Netzer
, and
G.
De las Cuevas
, “
Applications of approximate tensor decompositions
,” (unpublished).
16.
E. H.
Lieb
,
K.
Ball
, and
E. A.
Carlen
, “
Sharp uniform convexity and smoothness inequalities for trace norms
,”
Invent. Math.
115
,
463
(
1994
).
17.
J.
Lindenstrauss
, “
On the modulus of smoothness and divergent series in Banach spaces
,”
Mich. Math. J.
10
,
241
252
(
1963
).
18.
R. E.
Megginson
,
An Introduction to Banach Space Theory
(
Springer
,
1998
).
19.
R.
Orus
, “
Tensor networks for complex systems
,”
Nat. Rev. Phys.
1
,
538
(
2019
).
20.
R. T.
Rockafellar
,
Convex Analysis
, Princeton Mathematical Series Vol. 28 (
Princeton University Press
,
1970
), p.
xviii+451
.
21.
C. J.
Stark
and
A. W.
Harrow
, “
Compressibility of positive semidefinite factorizations and quantum models
,”
IEEE Trans. Inf. Theory
62
,
2867
2880
(
2016
).
22.
G.
Vidal
and
R.
Tarrach
, “
Robustness of entanglement
,”
Phys. Rev. A
59
,
141
(
1999
).
23.
G. A.
Watson
, “
Characterization of the subdifferential of some matrix norms
,”
Linear Algebra Appl.
170
,
33
45
(
1992
).
24.
R.
Webster
,
Convexity
(
Oxford Science Publications
,
1994
).
25.
M. M.
Wolf
,
Quantum Channels and Operations
, Unpublished Lecture Notes (
2012
).
You do not currently have access to this content.