We introduce an exactly solvable one-dimensional potential that supports both bound and/or resonance states. This potential is a generalization of the well-known 1D Morse potential where we introduced a deformation that preserves the finite spectrum property. On the other hand, in the limit of zero deformation, the potential reduces to the exponentially confining potential well introduced recently by Alhaidari [Theor. Math. Phys. 206, 84–96 (2021)]. The latter potential supports an infinite spectrum, which means that the zero deformation limit is a critical point where our system will transition from the finite spectrum limit to the infinite spectrum limit. We solve the corresponding Schrodinger equation and obtain the energy spectrum and the eigenstates using the tridiagonal representation approach.

1.
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
, “
Supersymmetry in quantum mechanics
,”
Phys. Rep.
251
,
267
385
(
1995
).
2.
M.
Bander
and
C.
Itzykson
, “
Group theory and the hydrogen atom (I)
,”
Rev. Mod. Phys.
38
,
330
345
(
1966
).
3.
Y.
Alhassid
,
F.
Iachello
, and
F.
Gürsey
, “
Group theory of the Morse oscillator
,”
Chem. Phys. Lett.
99
,
27
30
(
1983
).
4.
L.
Infeld
and
T. E.
Hull
, “
The factorization method
,”
Rev. Mod. Phys.
23
,
21
68
(
1951
).
5.
H.
Ciftci
,
R. L.
Hall
, and
N.
Saad
, “
Construction of exact solutions to eigenvalue problems by the asymptotic iteration method
,”
J. Phys. A: Math. Gen.
38
,
1147
1155
(
2005
).
6.
R.
De
,
R.
Dutt
, and
U.
Sukhatme
, “
Mapping of shape invariant potentials under point canonical transformations
,”
J. Phys. A: Math. Gen.
25
,
L843
L850
(
1992
).
7.
A. F.
Nikiforov
and
V. B.
Uvarov
,
Special Functions of Mathematical Physics
(
Birkhäuser
,
Basel
,
1988
), Vol. 205.
8.
A. D.
Alhaidari
and
H.
Bahlouli
, “
Tridiagonal representation approach in quantum mechanics
,”
Phys. Scr.
94
,
125206
(
2019
).
9.
P. M.
Morse
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
,
57
64
(
1929
).
10.
A. D.
Alhaidari
, “
Exponentially confining potential well
,”
Theor. Math. Phys.
206
,
84
96
(
2021
).
11.
A. D.
Alhaidari
and
H.
Bahlouli
, “
Bound states and the potential parameter spectrum
,”
J. Math. Phys.
61
,
062103
(
2020
).
12.
A. J.
Sous
, A change of variable y(x)=(eλx+1)1 has been used to convert the wave Eq. (6) into a form amenable to the AIM treatment without the need for the traditional wavefunction transformation used in the method, private communication (
2021
).
13.

In our work, we define a resonance state as a short-lived eigenstate of the Hamiltonian operator with an energy eigenvalue that has a positive real part that lies between the local maxima and the local minima of the potential. Therefore, a necessary, but not sufficient, condition for the existence of resonance is that the cubic equation (2) has two separate positive real roots in the interval 0 < z0 < 1/q.

14.
D. R.
Curtiss
, “
Recent extentions of Descartes’ rule of signs
,”
Ann. Math.
19
,
251
278
(
1918
).
15.
F.
Brau
and
M.
Lassaut
, “
Critical strength of attractive central potentials
,”
J. Phys. A: Math. Gen.
37
,
11243
11257
(
2004
).
16.
F.
Brau
, “
Upper limit on the critical strength of central potentials in relativistic quantum mechanics
,”
J. Math. Phys.
46
,
032305
(
2005
).
17.
A. D.
Alhaidari
, “
Series solutions of Laguerre- and Jacobi-type differential equations in terms of orthogonal polynomials and physical applications
,”
J. Math. Phys.
59
,
063508
(
2018
).
18.
A. D.
Alhaidari
, “
Series solutions of Heun-type equation in terms of orthogonal polynomials
,”
J. Math. Phys.
59
,
113507
(
2018
).
19.
A. D.
Alhaidari
, “
Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity
,”
Theor. Math. Phys.
202
,
17
29
(
2020
).
20.
A. D.
Alhaidari
, “
Solution of the nonrelativistic wave equation using the tridiagonal representation approach
,”
J. Math. Phys.
58
,
072104
(
2017
).
21.
N.
Rosen
and
P. M.
Morse
, “
On the vibrations of polyatomic molecules
,”
Phys. Rev.
42
,
210
217
(
1932
).
22.
H.
Eğrifes
,
D.
Demirhan
, and
F.
Büyükkiliç
, “
Exact solutions of the Schrödinger equation for two ‘deformed’ hyperbolic molecular potentials
,”
Phys. Scr.
60
,
195
198
(
1999
).
23.
W. V.
Assche
, “
Solution of an open problem about two families of orthogonal polynomials
,”
SIGMA
15
,
005
(
2019
).
24.
J.
Aguilar
and
J. M.
Combes
, “
A class of analytic perturbations for one-body Schrödinger Hamiltonians
,”
Commun. Math. Phys.
22
,
269
279
(
1971
).
25.
A. D.
Alhaidari
, “
Open problem in orthogonal polynomials
,”
Rep. Math. Phys.
84
,
393
405
(
2019
).
26.
M.-P.
Chen
and
H. M.
Srivastava
, “
Orthogonality relations and generating functions for Jacobi polynomials and related hypergeometric functions
,”
Appl. Math. Comput.
68
,
153
188
(
1995
).

Supplementary Material

You do not currently have access to this content.