We describe a simple experimental setting where joint measurements performed on a single (classical or quantum) entity can violate both the Bell-CHSH inequality and the marginal laws (also called no-signaling conditions). Once emitted by a source, the entity propagates within the space of Alice’s and Bob’s detection screens, with the measurements’ outcomes corresponding to the entity being absorbed or not absorbed in a given time interval. The violation of the marginal laws results from the fact that the choice of the screen on the side of Alice affects the detection probability on the side of Bob, and vice versa, and we show that for certain screen choices, the Bell-CHSH inequality can be violated up to its mathematical maximum. Our analysis provides a clarification of the mechanisms that could be at play when the Bell-CHSH inequality and marginal laws are violated in entangled bipartite systems, which would not primarily depend on the presence of a bipartite structure but on the fact that the latter can manifest as an undivided whole.

1.
D.
Aerts
, “
Example of a macroscopical situation that violates Bell inequalities
,”
Lett. Nuovo Cimento
34
,
107
111
(
1982
).
2.
D.
Aerts
, “
The description of one and many physical systems
,” in
Foundations of Quantum Mechanics
, edited by
C.
Gruber
(
AVCP
,
Lausanne, Switzerland
,
1983
), pp.
63
148
.
3.
J. F.
Clauser
,
M. A.
Horne
,
A.
Shimony
, and
R. A.
Holt
, “
Proposed experiment to test local hidden-variable theories
,”
Phys. Rev. Lett.
23
,
880
884
(
1969
).
4.
L. E.
Ballentine
, “
Resource letter IQM-2: Foundations of quantum mechanics since the Bell inequalities
,”
Am. J. Phys.
55
,
785
792
(
1987
).
5.
M. G.
Alford
, “
Ghostly action at a distance: A non-technical explanation of the Bell inequality
,”
Am. J. Phys.
84
,
448
457
(
2016
).
6.
D.
Aerts
, “
An attempt to imagine parts of the reality of the micro-world
,” in
Problems in Quantum Physics II; Gdansk ’89
, edited by
J.
Mizerski
, et al.
(
World Scientific Publishing Company
,
Singapore
,
1990
), pp.
3
25
.
7.
J. S.
Bell
, “
Bertlmann’s socks and the nature of reality
,”
J. Phys. Colloq.
42
(
C2
),
C2-41
C2-62
(
1981
).
8.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
When Bertlmann wears no socks. Common causes induced by measurements as an explanation for quantum correlations
,” arXiv:1912.07596 [quant-ph] (
2019
).
9.
D.
Aerts
, “
A mechanistic classical laboratory situation violating the Bell inequalities with 22 exactly ‘in the same way’ as its violations by the EPR experiments
,
Helv. Phys. Acta
64
,
1
23
(
1991
).
10.
D.
Aerts
and
T.
Durt
, “
Quantum, classical and intermediate, an illustrative example
,”
Found. Phys.
24
,
1353
1369
(
1994
).
11.
D.
Aerts
,
S.
Aerts
,
J.
Broekaert
, and
L.
Gabora
, “
The violation of Bell inequalities in the macroworld
,”
Found. Phys.
30
,
1387
1414
(
2000
).
12.
M.
Sassoli de Bianchi
, “
The δ-quantum machine, the k-model, and the non-ordinary spatiality of quantum entities
,”
Found. Sci.
18
,
11
41
(
2013
).
13.
M.
Sassoli de Bianchi
, “
Using simple elastic bands to explain quantum mechanics: A conceptual review of two of aerts’ machine-models
,”
Cent. Eur. J. Phys.
11
,
147
161
(
2013
).
14.
M.
Sassoli de Bianchi
, “
Quantum dice
,”
Ann. Phys.
336
,
56
75
(
2013
).
15.
M.
Sassoli de Bianchi
, “
A remark on the role of indeterminism and non-locality in the violation of Bell’s inequality
,”
Ann. Phys.
342
,
133
142
(
2014
).
16.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem
,”
Ann. Phys.
351
,
975
1025
(
2014
).
17.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
The extended Bloch representation of quantum mechanics. Explaining superposition, interference and entanglement
,”
J. Math. Phys.
57
,
122110
(
2016
).
18.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
Quantum measurements as weighted symmetry breaking processes: The hidden measurement perspective
,”
Int. J. Quantum Found.
3
,
1
16
(
2017
).
19.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
The extended Bloch representation of quantum mechanics for infinite-dimensional entities
,” in
Probing the Meaning of Quantum Mechanics. Information, Contextuality, Relationalism and Entanglement. Proceedings of the II International Workshop on Quantum Mechanics and Quantum Information. Physical, Philosophical and Logical Approaches
, edited by
D.
Aerts
,
M. L.
Dalla Chiara
,
C.
de Ronde
, and
D.
Krause
(
World Scientific
,
Singapore
,
2019
).
20.
H.
Zinkernagel
, “
Niels Bohr on the wave function and the classical/quantum divide
,”
Stud. Hist. Philos. Mod. Phys.
53
,
9
19
(
2016
).
21.
D.
Aerts
,
M.
Sassoli de Bianchi
,
S.
Sozzo
, and
T.
Veloz
, “
On the conceptuality interpretation of quantum and relativity theories
,”
Found. Sci.
25
,
5
54
(
2020
).
22.
D.
Aerts
and
S.
Sozzo
, “
What is quantum? Unifying its micro-physical and structural appearance
,” in
Quantum Interaction. QI 2014
, Lecture Notes in Computer Science Vol. 8951, edited by
H.
Atmanspacher
, et al.
(
Springer
,
Cham
,
2015
), pp.
12
23
.
23.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
Quantum perspectives on evolution
,” in
The Map and the Territory: Exploring the Foundations of Science, Thought and Reality
, The Frontiers Collection, edited by
S.
Wuppuluri
and
F.
Antonio Doria
(
Springer
,
2018
), pp.
571
595
.
24.
S. J.
van Enk
, “
Single-particle entanglement
,”
Phys. Rev. A
72
,
064306
(
2005
).
25.
M. A.
Can
,
A.
Klyachko
, and
A.
Shumovsky
, “
Single-particle entanglement
,”
J. Opt. B: Quantum Semiclassical Opt.
7
,
L1
(
2005
).
26.
M.
Pawlowski
and
M.
Czachor
, “
Degree of entaglement as a physically ill-posed problem: The case of entanglement with vacuum
,”
Phys. Rev. A
73
,
042111
(
2006
).
27.
M. O.
Terra Cunha
,
J. A.
Dunningham
, and
V.
Vedral
, “
Entanglement in single particle systems
,”
Proc. R. Soc. London, Ser. A
463
,
2277
2286
(
2007
).
28.
S.
Ashhab
,
K.
Maruyama
, and
F.
Nori
, “
Observing quantum nonlocality in the entanglement between modes of massive particles
,”
Phys. Rev. A
75
,
022108
(
2007a
).
29.
S.
Ashhab
,
K.
Maruyama
, and
F.
Nori
, “
Detecting mode entanglement: The role of coherent states, superselection rules, and particle statistics
,”
Phys. Rev. A
76
,
052113
(
2007b
).
30.
T.
Wasak
,
A.
Smerzi
, and
J.
Chwedeńczuk
, “
Role of particle entanglement in the violation of Bell inequalities
,”
Sci. Rep.
8
,
1777
(
2018
).
31.
D.
Aerts
,
J.
Aerts Arguëlles
,
L.
Beltran
,
S.
Geriente
,
M.
Sassoli de Bianchi
,
S.
Sozzo
, and
T.
Veloz
, “
Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation
,”
Eur. Phys. J. Plus
134
,
493
(
2019
).
32.
G.
Adenier
and
A. Y.
Khrennikov
, “
Is the fair sampling assumption supported by EPR experiments?
,”
J. Phys. B: At., Mol. Opt. Phys.
40
,
131
141
(
2007
).
33.
H.
De Raedt
,
K.
Michielsen
, and
F.
Jin
, “
Einstein–Podolsky–Rosen–Bohm laboratory experiments: Data analysis and simulation
,”
AIP Conf. Proc.
1424
,
55
66
(
2012
).
34.
H.
De Raedt
,
F.
Jin
, and
K.
Michielsen
, “
Data analysis of Einstein–Podolsky–Rosen–Bohm laboratory experiments
,”
Proc. SPIE
8832
,
88321N
(
2013
).
35.
G.
Adenier
and
A.
Khrennikov
, “
Test of the no-signaling principle in the Hensen loophole-free CHSH experiment
,”
Fortschr. Phys.
65
,
1600096
(
2017
).
36.
A.
Bednorz
, “
Analysis of assumptions of recent tests of local realism
,”
Phys. Rev. A
95
,
042118
(
2017
).
37.
M.
Kupczynski
, “
Is Einsteinian no-signalling violated in Bell tests?
,”
Open Phys.
15
,
739
753
(
2017
).
38.
H.
Feshbach
, “
The optical model and its justification
,”
Ann. Rev. Nucl. Sci.
8
,
49
(
1958
).
39.
L. E.
Ballentine
and
J. P.
Jarrett
, “
Bell’s theorem: Does quantum mechanics contradict relativity?
,”
Am. J. Phys.
55
,
696
701
(
1987
).
40.
W.
Jaworski
, “
The concept of a time-of-sojourn operator and spreading of wave packets
,”
J. Math. Phys.
30
,
1505
1514
(
1989
).
41.
M.
Sassoli de Bianchi
, “
Violation of CHSH inequality and marginal laws in mixed sequential measurements with order effects
,”
Soft Comput.
24
,
10231
(
2020
).
42.
B. F.
Toner
and
D.
Bacon
, “
The communication cost of simulating Bell correlation
,”
Phys. Rev. Lett.
91
,
187904
(
2003
).
43.
D.
Aerts
and
S.
Sozzo
, “
Quantum entanglement in conceptual combinations
,”
Int. J. Theor. Phys.
53
,
3587
3603
(
2014
).
44.
H.
Rauch
,
A.
Zeilinger
,
G.
Badurek
,
A.
Wilfing
,
W.
Bauspiess
, and
U.
Bonse
, “
Verification of coherent spinor rotation of fermions
,”
Phys. Lett. A
54
,
425
427
(
1975
).
45.
S. A.
Werner
,
R.
Colella
,
A. W.
Overhauser
, and
C. F.
Eagen
, “
Observation of the phase shift of a neutron due to precession in a magnetic field
,”
Phys. Rev. Lett.
35
,
1053
1055
(
1975
).
46.
D.
Aerts
, “
The stuff the world is made of: Physics and reality
,” in
Einstein Meets Magritte: An Interdisciplinary Reflection
, edited by
D.
Aerts
,
J.
Broekaert
, and
E.
Mathijs
(
Springer Netherlands
,
Dordrecht
,
1999
), pp.
129
183
.
47.
M.
Sassoli de Bianchi
, “
Theoretical and conceptual analysis of the celebrated 4π-symmetry neutron interferometry experiments
,”
Found. Sci.
22
,
627
653
(
2017
).
48.
R. E.
Kastner
,
The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility
(
Cambridge University Press
,
New York
,
2013
).
49.
M.
Sassoli de Bianchi
, “
From permanence to total availability: A quantum conceptual upgrade
,”
Found. Sci.
17
,
223
244
(
2012
).
You do not currently have access to this content.