We prove the existence of a countably infinite number of “excited” states for the Lorentzian-signature Taub–Wheeler–DeWitt (WDW) equation when a cosmological constant is present using the Euclidean-signature semi-classical method. We also find a “ground” state solution when both an aligned electromagnetic field and cosmological constant are present; as a result, conjecture that the Euclidean-signature semi-classical method can be used to prove the existence of a countably “infinite” number of “excited” states when the two aforementioned matter sources are present. Afterward, we prove the existence of asymptotic solutions to the vacuum Taub–WDW equation using the “no boundary” and “wormhole” solutions of the Taub Euclidean-signature Hamilton–Jacobi equation and compare their mathematical properties. We then discuss the fascinating qualitative properties of the wave functions we have computed. By utilizing the Euclidean-signature semi-classical method in the above manner, we further show its ability to prove the existence of solutions to Lorentzian-signature equations without having to invoke a Wick rotation. This feature of not needing to apply a Wick rotation makes this method potentially very useful for tackling a variety of problems in bosonic relativistic field theory and quantum gravity.

1.
A. G.
Cohen
,
D. B.
Kaplan
, and
A. E.
Nelson
, “
Effective field theory, black holes, and the cosmological constant
,”
Phys. Rev. Lett.
82
,
4971
(
1999
).
2.
V.
Moncrief
,
A.
Marini
, and
R.
Maitra
, “
Modified semi-classical methods for nonlinear quantum oscillations problems
,”
J. Math. Phys.
53
,
103516
(
2012
).
3.
A.
Sergeev
, On-line calculation and graphical display of Rayleigh–Schrödinger perturbation series for various quantum-mechanical problems, http://www.asergeev.com/rsptexp/rsptexp.htm.
4.
J. H.
Bae
, “
Mixmaster revisited: Wormhole solutions to the Bianchi IX Wheeler–DeWitt equation using the Euclidean-signature semi-classical method
,”
Classical Quantum Gravity
32
,
075006
(
2015
).
5.
J. B.
Hartle
and
S. W.
Hawking
, “
Wave function of the universe
,”
Phys. Rev. D
28
,
2960
(
1983
).
6.
A.
Neronov
and
I.
Vovk
, “
Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars
,”
Science
328
,
73
(
2010
).
7.
F.
Tavecchio
,
G.
Ghisellini
,
L.
Foschini
,
G.
Bonnoli
,
G.
Ghirlanda
, and
P.
Coppi
, “
The intergalactic magnetic field constrained by Fermi/large area telescope observations of the TeV blazar 1ES 0229+200
,”
Mon. Not. R. Astron. Soc.: Lett.
406
,
L70
(
2010
).
8.
A. Y.
Kamenshchik
and
I. V.
Mishakov
, “
Fermions in one-loop quantum cosmology
,”
Phys. Rev. D
47
,
1380
(
1993
).
9.
G.
Esposito
,
A. Y.
Kamenshchik
,
I. V.
Mishakov
, and
G.
Pollifrone
, “
Relativistic gauge conditions in quantum cosmology
,”
Phys. Rev. D
52
,
2183
(
1995
).
10.
T.
Kobayashi
and
M. S.
Sloth
, “
Early cosmological evolution of primordial electromagnetic fields
,”
Phys. Rev. D
100
,
023524
(
2019
).
11.
J. B.
Jiménez
and
A. L.
Maroto
, “
Cosmological electromagnetic fields and dark energy
,”
J. Cosmol. Astropart. Phys.
2009
,
016
.
12.
J.
Louko
, “
Quantum cosmology with electromagnetism
,”
Phys. Rev. D
38
,
478
(
1988
).
13.
A.
Karagiorgos
,
T.
Pailas
,
N.
Dimakis
,
P. A.
Terzis
, and
T.
Christodoulakis
, “
Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field
,”
J. Cosmol. Astropart. Phys.
2018
,
030
.
14.
M.
Pavšič
, “
Wheeler–DeWitt equation in five dimensions and modified QED
,”
Phys. Lett. B
717
,
441
(
2012
).
15.
C. L.
Bennett
,
D.
Larson
,
J. L.
Weiland
,
N.
Jarosik
,
G.
Hinshaw
,
N.
Odegard
 et al., “
Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results
,”
Astrophys. J., Suppl. Ser.
208
,
20
(
2013
).
16.
G.
Hinshaw
,
D.
Larson
,
E.
Komatsu
,
D. N.
Spergel
,
C. L.
Bennett
,
J.
Dunkley
 et al., “
Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results
,”
Astrophys. J., Suppl. Ser.
208
,
19
(
2013
).
17.
P. A.
Ade
,
N.
Aghanim
,
M.
Arnaud
,
M.
Ashdown
,
J.
Aumont
,
C.
Baccigalupi
 et al., “
Planck 2015 results-XIII. Cosmological parameters
,”
Astron. Astrophys.
594
,
A13
(
2016
).
18.
T.
Kahniashvili
,
A.
Kosowsky
,
A.
Mack
, and
R.
Durrer
, “
CMB signatures of a primordial magnetic field
,”
AIP Conf. Proc.
555
,
451
456
(
2001
).
19.
D.
Paoletti
and
F.
Finelli
, “
CMB constraints on a stochastic background of primordial magnetic fields
,”
Phys. Rev. D
83
,
123533
(
2011
).
20.
K.
Miyamoto
,
T.
Sekiguchi
,
H.
Tashiro
, and
S.
Yokoyama
, “
CMB distortion anisotropies due to the decay of primordial magnetic fields
,”
Phys. Rev. D
89
,
063508
(
2014
).
21.
H. J.
Hortúa
and
L.
Castañeda
, “
Reduced bispectrum seeded by helical primordial magnetic fields
,”
J. Cosmol. Astropart. Phys.
2017
,
020
.
22.
T.
Biswas
and
A.
Mazumdar
, “
Inflation with a negative cosmological constant
,”
Phys. Rev. D
80
,
023519
(
2009
).
23.
J. B.
Hartle
,
S.
Hawking
, and
T.
Hertog
, “
Accelerated expansion from negative Λ
,” arXiv:1205.3807 (
2012
).
24.
A. T.
Mithani
and
A.
Vilenkin
, “
Inflation with negative potentials and the signature reversal symmetry
,”
J. Cosmol. Astropart. Phys.
2013
,
024
.
25.
J. B.
Hartle
,
S. W.
Hawking
, and
T.
Hertog
, “
Quantum probabilities for inflation from holography
,”
J. Cosmol. Astropart. Phys.
2014
,
015
.
26.
L.
Visinelli
,
S.
Vagnozzi
, and
U.
Danielsson
, “
Revisiting a negative cosmological constant from low-redshift data
,”
Symmetry
11
,
1035
(
2019
).
27.
V.
Moncrief
and
M. P.
Ryan
, Jr.
, “
Amplitude-real-phase exact solutions for quantum mixmaster universes
,”
Phys. Rev. D
44
,
2375
(
1991
).
28.
R.
Graham
and
J.
Bene
, “
Supersymmetric Bianchi type IX cosmology with a scalar field
,”
Phys. Lett. B
302
,
183
(
1993
).
29.
H.
García-Compeán
,
O.
Obregón
, and
C.
Ramírez
, “
Noncommutative quantum cosmology
,”
Phys. Rev. Lett.
88
,
161301
(
2002
).
30.
V.
Moncrief
, “
Euclidean-signature semi-classical methods for quantum cosmology
,” in
Surveys in Differential Geometry
, Commemorating the 100th Anniversary of the Development of General Relativity, edited by
S. T.
Yau
and
L.
Bieri
(
International Press of Boston
,
2014
) (Invited Submission).
31.
A.
Marini
,
R.
Maitra
, and
V.
Moncrief
, “
Euclidean signature semi-classical methods for bosonic field theories: Interacting scalar fields
,”
Ann. Math. Sci. Appl.
1
(
1
),
3
55
(
2016
).
32.
A.
Marini
,
R.
Maitra
, and
V.
Moncrief
, “
A Euclidean signature semi-classical program
,”
Commun. Anal. Geom.
28
(
4
),
979
1056
(
2020
).
33.
C. W.
Misner
, “
Mixmaster universe
,”
Phys. Rev. Lett.
22
,
1071
(
1969
).
34.
M. P.
Ryan
, Jr.
, “
The oscillatory regime near the singularity in Bianchi-type IX universes
,”
Ann. Phys.
70
,
301
(
1972
).
35.
V. A.
Belinskii
,
I. M.
Khalatnikov
, and
E. M.
Lifshitz
, “
Oscillatory approach to a singular point in the relativistic cosmology
,”
Adv. Phys.
19
,
525
(
1970
).
36.
V. A.
Belinskii
,
G. W.
Gibbons
,
D. N.
Page
, and
C. N.
Pope
, “
Asymptotically Euclidean Bianchi IX metrics in quantum gravity
,”
Phys. Lett. B
76
,
433
(
1978
).
37.
P.
De Bernardis
,
P. A. R.
Ade
,
J. J.
Bock
,
J. R.
Bond
,
J.
Borrill
,
A.
Boscaleri
 et al., “
Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology
,”
Astrophys. J.
564
,
559
(
2002
).
38.
C. W.
Misner
, “
Quantum cosmology. I
,”
Phys. Rev.
186
,
1319
(
1969
).
39.
J. D.
Barrow
, “
Chaotic behaviour in general relativity
,”
Phys. Rep.
85
,
1
(
1982
).
40.
D. F.
Chernoff
and
J. D.
Barrow
, “
Chaos in the mixmaster universe
,”
Phys. Rev. Lett.
50
,
134
(
1983
).
41.
N. J.
Cornish
and
J. J.
Levin
, “
The mixmaster universe is chaotic
,”
Phys. Rev. Lett.
78
,
998
(
1997
).
42.
A. E.
Motter
and
P. S.
Letelier
, “
Mixmaster chaos
,”
Phys. Lett. A
285
,
127
(
2001
).
43.
R.
Graham
, “
Supersymmetric Bianchi type IX cosmology
,”
Phys. Rev. Lett.
67
,
1381
(
1991
).
44.
R.
Graham
, “
Supersymmetric general Bianchi type IX cosmology with a cosmological term
,”
Phys. Lett. B
277
,
393
(
1992
).
45.
A.
Macías
,
O.
Obregón
, and
J.
Socorro
, “
Supersymmetric quantum cosmology
,”
Int. J. Mod. Phys. A
8
,
4291
(
1993
).
46.
T.
Damour
and
P.
Spindel
, “
Quantum supersymmetric Bianchi IX cosmology
,”
Phys. Rev. D
90
,
103509
(
2014
).
47.
A. H.
Taub
, “
Empty space-times admitting a three parameter group of motions
,”
Ann. Math.
53
,
472
(
1951
).
48.
E.
Newman
,
L.
Tamburino
, and
T.
Unti
, “
Empty-space generalization of the Schwarzschild metric
,”
J. Math. Phys.
4
,
915
(
1963
).
49.
R.
Kerner
and
R. B.
Mann
, “
Tunnelling, temperature, and Taub-NUT black holes
,”
Phys. Rev. D
73
,
104010
(
2006
).
50.
A.
Karagiorgos
,
T.
Pailas
,
N.
Dimakis
,
G. O.
Papadopoulos
,
P. A.
Terzis
, and
T.
Christodoulakis
, “
Quantum cosmology of Bianchi VIII, IX LRS geometries
,”
J. Cosmol. Astropart. Phys.
2019
,
006
.
51.
M. V.
Battisti
and
G.
Montani
, “
Quantum dynamics of the Taub universe in a generalized uncertainty principle framework
,”
Phys. Rev. D
77
,
023518
(
2008
).
52.
V.
Cascioli
,
G.
Montani
, and
R.
Moriconi
, “
WKB approximation for the polymer quantization of the Taub model
,” arXiv:1903.09417 (
2019
).
53.
M.
De Angelis
and
G.
Montani
, “
Dynamics of quantum anisotropies in a Taub universe in the WKB approximation
,”
Phys. Rev. D
101
,
103532
(
2020
).
54.
S. M.
Waller
, “
Bianchi type-IX electromagnetic universes
,”
Phys. Rev. D
29
,
176
(
1984
).
55.
C.
Uggla
,
M.
Bradley
, and
M.
Marklund
, “
Classifying Einstein’s field equations with applications to cosmology and astrophysics
,”
Classical Quantum Gravity
12
,
2525
(
1995
).
56.
A.
Vilenkin
, “
Interpretation of the wave function of the universe
,”
Phys. Rev. D
39
,
1116
(
1989
).
57.
A.
Mostafazadeh
, “
Quantum mechanics of Klein–Gordon-type fields and quantum cosmology
,”
Ann. Phys.
309
,
1
(
2004
).
58.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
Dynamical structure and definition of energy in general relativity
,”
Phys. Rev.
116
,
1322
(
1959
).
59.
A. E.
Fischer
, “
The theory of superspace
,” in
Relativity
(
Springer
,
1970
), pp.
303
357
.
60.
D.
Giulini
, “
The superspace of geometrodynamics
,”
Gen. Relativ. Gravitation
41
,
785
(
2009
).
61.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
Chicago, IL
,
1984
), p.
504
.
62.
C.
Rovelli
and
F.
Vidotto
,
Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory
(
Cambridge University Press
,
2014
).
63.
B. S.
DeWitt
, “
Quantum theory of gravity. I. The canonical theory
,”
Phys. Rev.
160
,
1113
(
1967
).
64.
J. H.
Bae
, “
Quantizing the homogeneous linear perturbations about Taub using the Jacobi method of second variation
,”
Class. Quant. Grav.
32
(
14
),
145002
(
2015
).
65.
L. P.
Hughston
and
K. C.
Jacobs
, “
Homogeneous electromagnetic and massive-vector fields in Bianchi cosmologies
,”
Astrophys. J.
160
,
147
(
1970
).
66.
J.
Fernando Barbero
and
M. P.
Ryan
, Jr.
, “
Minisuperspace examples of quantization using canonical variables of the Ashtekar-type: Structure and solutions
,”
Phys. Rev. D
53
,
5670
(
1996
).
67.
V.
Moncrief
,
A.
Marini
, and
R.
Maitra
, “
Orbit space curvature as a source of mass in quantum gauge theory
,”
Ann. Math. Sci. Appl.
4
,
313
(
2019
).
68.
G. W.
Gibbons
and
C. N.
Pope
, “
The positive action conjecture and asymptotically Euclidean metrics in quantum gravity
,”
Commun. Math. Phys.
66
,
267
(
1979
).
69.
G. W.
Gibbons
and
S. W.
Hawking
,
Euclidean Quantum Gravity
(
World Scientific
,
1993
).
70.
S. E.
Martinez
and
M. P.
Ryan
, Jr.
, An exact solution for a quantum taub model, rctm,
1983
, p.
262
.
71.
R.
Graham
, “
Anisotropic diagonal Bianchi type-IX minisuperspace with N = 4 supersymmetry
,”
Phys. Rev. D
48
,
1602
(
1993
).
72.
K. V.
Kuchař
and
M. P.
Ryan
, Jr.
, “
Is minisuperspace quantization valid?: Taub in mixmaster
,”
Phys. Rev. D
40
,
3982
(
1989
).
73.
M. P.
Bronstein
, “
Quantentheorie schwacher gravitationsfelder
,”
Phys. Z. Sowjetunion
9
,
140
(
1936
).
74.
B.
Vakili
,
N.
Khosravi
, and
H. R.
Sepangi
, “
Bianchi spacetimes in noncommutative phase space
,”
Classical Quantum Gravity
24
,
931
(
2007
).
You do not currently have access to this content.