In this paper, we proceed with the analysis started in the work of Braga et al. [J. Math. Phys. 60(1), 013507, 2019] by the same authors, and using the renormalization group method, we obtain logarithmic corrections to the decay of solutions for a class of nonlinear integral equations whenever the nonlinearities are classified as marginal in the renormalization group sense.

1.
K.
Ishige
,
T.
Kawakami
, and
K.
Kobayashi
, “
Asymptotics for a nonlinear integral equation with a generalized heat kernel
,”
J. Evol. Equations
14
,
749
777
(
2014
).
2.
K.
Ishige
,
T.
Kawakami
, and
K.
Kobayashi
, “
Global solutions for a nonlinear integral equation with a generalized heat kernel
,”
Discrete Contin. Dyn. Syst. S
7
,
767
783
(
2014
).
3.
H.
Fujita
, “
On the blowing up of solutions to the Cauchy problem for ut = Δu + u1+α
,”
J. Fac. Sci., Univ. Tokyo, Sect. 1A
13
,
109
124
(
1966
).
4.
J.
Bricmont
,
A.
Kupiainen
, and
G.
Lin
, “
Renormalization group and asymptotics of solutions of nonlinear parabolic equations
,”
Commun. Pure Appl. Math.
47
,
893
922
(
1994
).
5.
G. A.
Braga
and
J. M.
Moreira
, “
Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients and marginal perturbations
,”
J. Stat. Phys.
148
(
2
),
280
295
(
2012
).
6.
G. A.
Braga
,
J. M.
Moreira
, and
C. F.
Souza
, “
Asymptotics for nonlinear integral equations with generalized heat kernel and time dependent coefficients using renormalization group technique
,”
J. Math. Phys.
60
(
1
),
013507
(
2019
).
You do not currently have access to this content.