The generic Heun operator of Lie type is identified as a certain BC-Gaudin magnet Hamiltonian in a magnetic field. By using the modified algebraic Bethe ansatz introduced to diagonalize such Gaudin models, we obtain the spectrum of the generic Heun operator of Lie type in terms of the Bethe roots of inhomogeneous Bethe equations. We also show that these Bethe roots are intimately associated with the roots of polynomial solutions of the differential Heun equation. We illustrate the use of this approach in two contexts: the representation theory of O(3) and the computation of the entanglement entropy for free Fermions on the Krawtchouk chain.
REFERENCES
1.
P.
Baseilhac
and R. A.
Pimenta
, “Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
,” Nucl. Phys. B
949
, 114824
(2019
); arXiv:1909.02464.2.
N.
Crampe
, L.
Vinet
, and A.
Zhedanov
, “Heun algebras of Lie type
,” Proc. Am. Math. Soc.
148
, 1079
–1094
(2020
); arXiv:1904.10643.3.
N.
Crampe
, “Algebraic Bethe ansatz for the XXZ Gaudin models with generic boundary
,” SIGMA
13
, 094
(2017
); arXiv:1710.08490.4.
F. A.
Grünbaum
, L.
Vinet
, and A.
Zhedanov
, “Algebraic Heun operator and band-time limiting
,” Commun. Math. Phys.
364
, 1041
–1068
(2018
); arXiv:1711.07862.5.
F. A.
Grünbaum
, L.
Vinet
, and A.
Zhedanov
, “Tridiagonalization and the Heun equation
,” J. Math. Phys.
58
, 031703
(2017
); arXiv:1602.04840.6.
P.
Baseilhac
, S.
Tsujimoto
, L.
Vinet
, and A.
Zhedanov
, “The Heun–Askey–Wilson algebra and the Heun operator of Askey–Wilson type
,” Ann. Henri Poincare
20
, 3091
–3112
(2019
); arXiv:1811.11407.7.
G.
Bergeron
, N.
Crampé
, S.
Tsujimoto
, L.
Vinet
, and A.
Zhedanov
, “The Heun–Racah and Heun–Bannai–Ito algebras
,” J. Math. Phys.
61
, 081701
(2020
); arXiv:2003.09558.8.
L.
Vinet
and A.
Zhedanov
, “The Heun operator of Hahn type
,” Proc. Am. Math. Soc.
147
, 2987
–2998
(2019
); arXiv:1808.00153.9.
V.
Eisler
and I.
Peschel
, “Properties of the entanglement Hamiltonian for finite free-Fermion chains
,” J. Stat. Mech.
2018
, 104001
; arXiv:1805.00078.10.
N.
Crampé
, R. I.
Nepomechie
, and L.
Vinet
, “Free-Fermion entanglement and orthogonal polynomials
,” J. Stat. Mech.
2019
, 093101
; arXiv:1907.00044.11.
N.
Crampe
, R. I.
Nepomechie
, and L.
Vinet
, “Entanglement in Fermionic chains and bispectrality
,” in Roman Jackiw 80th Birthday Festschrift
(World Scientific
, 2020
); arXiv:2001.10576.12.
E. K.
Sklyanin
, L. A.
Takhtadzhyan
, and L. D.
Faddeev
, “Quantum inverse problem method. I
,” Theor. Math. Phys.
40
, 688
–706
(1979
).13.
E. K.
Sklyanin
, “Boundary conditions for integrable quantum systems
,” J. Phys. A: Math. Gen.
21
, 2375
–2389
(1988
).14.
S.
Belliard
and N.
Crampe
, “Heisenberg XXX model with general boundaries: Eigenvectors from algebraic Bethe ansatz
,” SIGMA
9
, 072
(2013
); arXiv:1309.6165.15.
J.
Cao
, W.-L.
Yang
, K.
Shi
, and Y.
Wang
, “Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions
,” Nucl. Phys. B
875
, 152
–165
(2013
); arXiv:1306.1742.16.
N.
Crampé
, “Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries
,” J. Phys. A: Math. Theor.
48
, 08FT01
(2015
); arXiv:1411.7954.17.
J.
Avan
, S.
Belliard
, N.
Grosjean
, and R. A.
Pimenta
, “Modified algebraic Bethe ansatz for XXZ chain on the segment—III. Proof
,” Nucl. Phys. B
899
, 229
–246
(2015
); arXiv:1506.02147.18.
S.
Belliard
and R. A.
Pimenta
, “Modified algebraic Bethe ansatz for XXZ chain on the segment—II. General cases
,” Nucl. Phys. B
894
, 527
–552
(2015
); arXiv:1412.7511.19.
M. E. H.
Ismail
, S. S.
Lin
, and S. S.
Roan
, “Bethe ansatz equations of XXZ model and q-Sturm-Liouville problems
,” arXiv:math-ph/0407033.20.
P. B.
Wiegmann
and A. X.
Zabrodin
, “Algebraization of difference eigenvalue equations related to Uq(sl2)
,” Nucl. Phys. B
451
, 699
(1995
); arXiv:cond-mat/9501129.21.
P.
Baseilhac
, S.
Belliard
, and N.
Crampé
, “FRT presentation of the Onsager algebras
,” Lett. Math. Phys.
108
, 2189
(2018
); arXiv:1709.08555.22.
P.
Baseilhac
and N.
Crampé
, “FRT presentation of classical Askey-Wilson algebras
,” Lett. Math. Phys.
109
, 2187
(2019
); arXiv:1806.07232.23.
T.
Skrypnyk
, “Generalized Gaudin systems in a magnetic field and non-skew-symmetric r-matrices
,” J. Phys. A: Math. Theor.
40
, 13337
(2007
).24.
A. V.
Turbiner
, “The Heun operator as a Hamiltonian
,” J. Phys. A: Math. Theor.
49
, 26LT01
(2016
); arXiv:1603.02053.25.
J.
Patera
and P.
Winternitz
, “A new basis for the representations of the rotation group. Lamé and Heun polynomials
,” J. Math. Phys.
14
, 1130
–1139
(1973
).26.
M.
Christandl
, N.
Datta
, T. C.
Dorlas
, A.
Ekert
, A.
Kay
, and A. J.
Landahl
, “Perfect transfer of arbitrary states in quantum spin networks
,” Phys. Rev. A
71
, 032312
(2005
); arXiv:quant-ph/0411020.27.
C.
Albanese
, M.
Christandl
, N.
Datta
, and A.
Ekert
, “Mirror inversion of quantum states in linear registers
,” Phys. Rev. Lett.
93
, 230502
(2004
); arXiv:quant-ph/0405029.28.
R.
Koekoek
and R. F.
Swarttouw
, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue
,” arXiv:math/9602214.29.
N.
Crampé
, K.
Guo
, and L.
Vinet
, “Entanglement of free Fermions on Hadamard graphs
,” Nucl. Phys. B
960
, 115176
(2020
); arXiv:2008.04925.30.
N.
Crampe
and R. I.
Nepomechie
, “Equivalent T-Q relations and exact results for the open TASEP
,” J. Stat. Mech.
2018
, 103105
; arXiv:1806.07748.31.
N.
Crampe
, L.
Poulain d’Andecy
, and L.
Vinet
, “A Calabi-Yau algebra with E6 symmetry and the Clebsch-Gordan series of sl(3)
,” arXiv:2005.13444.© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.