We present a simple method, not based on the transfer matrices, to prove vanishing of dynamical transport exponents. The method is applied to long-range quasiperiodic operators.
REFERENCES
1.
J.
Bourgain
, Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (Princeton University Press
, Princeton, NJ
, 2005
).2.
J.
Bourgain
and S.
Jitomirskaya
, “Absolutely continuous spectrum for 1D quasiperiodic operators
,” Inventiones Math.
148
(3
), 453
–463
(2002
).3.
D.
Damanik
and S.
Tcheremchantsev
, “Upper bounds in quantum dynamics
,” J. Am. Math. Soc.
20
(3
), 799
–827
(2007
).4.
D.
Damanik
and S.
Tcheremchantsev
, “Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian
,” J. Funct. Anal.
255
(10
), 2872
–2887
(2008
).5.
I.
Daubechies
, F.
Delbaen
, L.
Guth
, S.
Jitomirskaya
, A.
Kontorovich
, E.
Lindenstraus
, V.
Milman
, G.
Pisier
, P.
Sarnak
, Z.
Rudnick
, W.
Schlag
, G.
Staffilani
, T.
Tao
, and P.
Varju
, Remembering Jean Bourgain (1954-2018), Notices AMS 68, 2021.6.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization
,” J. Anal. Math.
69
, 153
–200
(1996
).7.
R.
Del Rio
, N.
Makarov
, and B.
Simon
, “Operators with singular continuous spectrum. II. Rank one operators
,” Commun. Math. Phys.
165
(1
), 59
–67
(1994
).8.
L.
Ge
and J.
You
, “Arithmetic version of Anderson localization via reducibility
,” Geom. Funct. Anal.
30
(5
), 1370
–1401
(2020
).9.
A. Y.
Gordon
, “Exceptional values of the boundary phase for the Schrödinger equation on the semi-axis
,” Usp. Mat. Nauk
47
(1
), 260
(1992
).10.
R.
Han
and S.
Jitomirskaya
, “Quantum dynamical bounds for ergodic potentials with underlying dynamics of zero topological entropy
,” Anal. PDE
12
(4
), 867
–902
(2019
).11.
S.
Jitomirskaya
and W.
Liu
, “Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” arXiv:1802.00781 (2018
).12.
S.
Jitomirskaya
, W.
Liu
, and Y.
Shi
, “Anderson localization for multi-frequency quasi-periodic operators on
,” Geom. Funct. Anal.
30
(2
), 457
–481
(2020
).13.
S.
Jitomirskaya
and R.
Mavi
, “Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials
,” Int. Math. Res. Not.
2017
(1
), 96
–120
.14.
S.
Jitomirskaya
and H.
Schulz-Baldes
, “Upper bounds on wavepacket spreading for random Jacobi matrices
,” Commun. Math. Phys.
273
(3
), 601
–618
(2007
).15.
S.
Jitomirskaya
and B.
Simon
, “Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,” Commun. Math. Phys.
165
(1
), 201
–205
(1994
).16.
S. Y.
Jitomirskaya
, “Metal-insulator transition for the almost Mathieu operator
,” Ann. Math.
150
(3
), 1159
–1175
(1999
).17.
S. Y.
Jitomirskaya
and Y.
Last
, “Power law subordinacy and singular spectra. II. Line operators
,” Commun. Math. Phys.
211
(3
), 643
–658
(2000
).18.
W.
Liu
, “Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices: Analysis and PDE to appear
,” arXiv:2007.00578 (2020
).19.
C.
Radin
and B.
Simon
, “Invariant domains for the time-dependent Schrödinger equation
,” J. Differ. Equations
29
(2
), 289
–296
(1978
).20.
B.
Simon
, “Absence of ballistic motion
,” Commun. Math. Phys.
134
(1
), 209
–212
(1990
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.