We present a simple method, not based on the transfer matrices, to prove vanishing of dynamical transport exponents. The method is applied to long-range quasiperiodic operators.

1.
J.
Bourgain
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (
Princeton University Press
,
Princeton, NJ
,
2005
).
2.
J.
Bourgain
and
S.
Jitomirskaya
, “
Absolutely continuous spectrum for 1D quasiperiodic operators
,”
Inventiones Math.
148
(
3
),
453
463
(
2002
).
3.
D.
Damanik
and
S.
Tcheremchantsev
, “
Upper bounds in quantum dynamics
,”
J. Am. Math. Soc.
20
(
3
),
799
827
(
2007
).
4.
D.
Damanik
and
S.
Tcheremchantsev
, “
Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian
,”
J. Funct. Anal.
255
(
10
),
2872
2887
(
2008
).
5.
I.
Daubechies
,
F.
Delbaen
,
L.
Guth
,
S.
Jitomirskaya
,
A.
Kontorovich
,
E.
Lindenstraus
,
V.
Milman
,
G.
Pisier
,
P.
Sarnak
,
Z.
Rudnick
,
W.
Schlag
,
G.
Staffilani
,
T.
Tao
, and
P.
Varju
, Remembering Jean Bourgain (1954-2018), Notices AMS 68, 2021.
6.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization
,”
J. Anal. Math.
69
,
153
200
(
1996
).
7.
R.
Del Rio
,
N.
Makarov
, and
B.
Simon
, “
Operators with singular continuous spectrum. II. Rank one operators
,”
Commun. Math. Phys.
165
(
1
),
59
67
(
1994
).
8.
L.
Ge
and
J.
You
, “
Arithmetic version of Anderson localization via reducibility
,”
Geom. Funct. Anal.
30
(
5
),
1370
1401
(
2020
).
9.
A. Y.
Gordon
, “
Exceptional values of the boundary phase for the Schrödinger equation on the semi-axis
,”
Usp. Mat. Nauk
47
(
1
),
260
(
1992
).
10.
R.
Han
and
S.
Jitomirskaya
, “
Quantum dynamical bounds for ergodic potentials with underlying dynamics of zero topological entropy
,”
Anal. PDE
12
(
4
),
867
902
(
2019
).
11.
S.
Jitomirskaya
and
W.
Liu
, “
Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase
,” arXiv:1802.00781 (
2018
).
12.
S.
Jitomirskaya
,
W.
Liu
, and
Y.
Shi
, “
Anderson localization for multi-frequency quasi-periodic operators on ZD
,”
Geom. Funct. Anal.
30
(
2
),
457
481
(
2020
).
13.
S.
Jitomirskaya
and
R.
Mavi
, “
Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials
,”
Int. Math. Res. Not.
2017
(
1
),
96
120
.
14.
S.
Jitomirskaya
and
H.
Schulz-Baldes
, “
Upper bounds on wavepacket spreading for random Jacobi matrices
,”
Commun. Math. Phys.
273
(
3
),
601
618
(
2007
).
15.
S.
Jitomirskaya
and
B.
Simon
, “
Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators
,”
Commun. Math. Phys.
165
(
1
),
201
205
(
1994
).
16.
S. Y.
Jitomirskaya
, “
Metal-insulator transition for the almost Mathieu operator
,”
Ann. Math.
150
(
3
),
1159
1175
(
1999
).
17.
S. Y.
Jitomirskaya
and
Y.
Last
, “
Power law subordinacy and singular spectra. II. Line operators
,”
Commun. Math. Phys.
211
(
3
),
643
658
(
2000
).
18.
W.
Liu
, “
Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices: Analysis and PDE to appear
,” arXiv:2007.00578 (
2020
).
19.
C.
Radin
and
B.
Simon
, “
Invariant domains for the time-dependent Schrödinger equation
,”
J. Differ. Equations
29
(
2
),
289
296
(
1978
).
20.
B.
Simon
, “
Absence of ballistic motion
,”
Commun. Math. Phys.
134
(
1
),
209
212
(
1990
).
You do not currently have access to this content.