Folded linear molecular chains are ubiquitous in biology. Folding is mediated by intra-chain interactions that “glue” two or more regions of a chain. The resulting fold topology is widely believed to be a determinant of biomolecular properties and function. Recently, knot theory has been extended to describe the topology of folded linear chains, such as proteins and nucleic acids. To classify and distinguish chain topologies, algebraic structure of quandles has been adapted and applied. However, the approach is limited as apparently distinct topologies may end up having the same number of colorings. Here, we enhance the resolving power of the quandle coloring approach by introducing Boltzmann weights. We demonstrate that the enhanced coloring invariants can distinguish fold topologies with an improved resolution.

1.
C. M.
Dobson
, “
Protein-misfolding diseases: Getting out of shape
,”
Nature
418
,
729
730
(
2002
).
2.
M. J.
Rowley
and
V. G.
Corces
, “
Organizational principles of 3D genome architecture
,”
Nat. Rev. Genet.
19
,
789
800
(
2018
).
3.
B.
Scalvini
,
V.
Sheikhhassani
,
J.
Woodard
,
J.
Aupič
,
R. T.
Dame
,
R.
Jerala
, and
A.
Mashaghi
, “
Topology of folded molecular chains: From single biomolecules to engineered origami
,”
Trends Chem.
2
,
609
622
(
2020
).
4.
M.
Heidari
,
H.
Schiessel
, and
A.
Mashaghi
, “
Circuit topology analysis of polymer folding reactions
,”
ACS Cent. Sci.
6
,
839
847
(
2020
).
5.
P.
Dabrowski-Tumanski
and
J. I.
Sulkowska
, “
Topological knots and links in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3415
3420
(
2017
).
6.
P.
Dabrowski-Tumanski
,
P.
Rubach
,
D.
Goundaroulis
,
J.
Dorier
,
P.
Sułkowski
,
K. C.
Millett
,
E. J.
Rawdon
,
A.
Stasiak
, and
J. I.
Sulkowska
, “
KnotProt 2.0: A database of proteins with knots and other entangled structures
,”
Nucleic Acids Res.
47
,
D367
D375
(
2019
).
7.
A.
Mashaghi
,
R. J.
van Wijk
, and
S. J.
Tans
, “
Circuit topology of proteins and nucleic acids
,”
Structure
22
,
1227
1237
(
2014
).
8.
J.
Sułkowska
,
E.
Rawdon
,
K.
Millett
,
J.
Onuchic
, and
A.
Stasiak
, “
Conservation of complex knotting and slipknotting patterns in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E1715
E1723
(
2012
).
9.
C.
Adams
,
J.
Devadoss
,
M.
Elhamdadi
, and
A.
Mashaghi
, “
Knot theory for proteins: Gauss codes, quandles and bondles
,”
J. Math. Chem.
58
,
1711
1736
(
2020
).
10.
M.
Elhamdadi
and
S.
Nelson
,
Quandles—An Introduction to the Algebra of Knots
, Student Mathematical Library Vol. 74 (
American Mathematical Society
,
Providence, RI
,
2015
), p.
x+245
.
11.
C. C.
Adams
,
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
(
W. H. Freeman and Company
,
New York
,
1994
), p.
xiv+306
.
12.
D.
Dancso
, “
Singular knots and involutive quandles
,” arXiv:1608.08163 (
2018
).
13.
I. R. U.
Churchill
,
M.
Elhamdadi
,
M.
Hajij
, and
S.
Nelson
, “
Singular knots and involutive quandles
,”
J. Knot Theory Ramifications
26
,
1750099
(
2017
).
14.
K.
Bataineh
,
M.
Elhamdadi
,
M.
Hajij
, and
W.
Youmans
, “
Generating sets of Reidemeister moves of oriented singular links and quandles
,”
J. Knot Theory Ramifications
27
,
1850064
(
2018
).
15.
J.
Ceniceros
,
R.
Churchill
,
M.
Elhamdadi
, and
M.
Hajij
, “
Cocycle invariants and oriented singular knots
,” arXiv:2009.07950 (
2020
).
You do not currently have access to this content.