We investigate the most general form of the one-dimensional Dirac Hamiltonian HD in the presence of scalar and pseudoscalar potentials. To seek embedding of supersymmetry (SUSY) in it, as an alternative procedure to directly employing the intertwining relations, we construct a quasi-Hamiltonian K, defined as the square of HD, to explore the consequences. We show that the diagonal elements of K under a suitable approximation reflect the presence of a superpotential, thus proving a useful guide in unveiling the role of SUSY. For illustrative purposes, we apply our scheme to the transformed one-dimensional version of the planar electron Hamiltonian under the influence of a magnetic field. We generate spectral solutions for a class of isochronous potentials.

1.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
(
Clarendron Press
,
Oxford
, 1930).
2.
B.
Thaller
,
The Dirac Equation
(
Springer
,
1992
).
3.
C. V.
Sukumar
, “
Supersymmetry and the Dirac equation for a central Coulomb field
,”
J. Phys. A: Math. Gen.
18
,
L697
(
1985
).
4.
R. W.
Haymaker
and
A. R. P.
Rau
, “
Supersymmetry in quantum mechanics
,”
Am. J. Phys.
54
,
928
(
1986
).
5.
F.
Cooper
,
A.
Khare
,
R.
Musto
, and
A.
Wipf
, “
Supersymmetry and the Dirac equation
,”
Ann. Phys.
187
,
1
(
1988
).
6.
R. J.
Hughes
,
V. A.
Kostelecký
, and
M. M.
Nieto
, “
Supersymmetric quantum mechanics in a first-order Dirac equation
,”
Phys. Rev. D
34
,
1100
(
1986
).
7.
R. C.
Paschoal
,
J. A.
Helayël-Neto
, and
L. P. G.
de Assis
, “
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
,”
Phys. Lett. A
349
,
67
(
2006
).
8.
H.
Hassanabadi
,
E.
Maghsoodi
,
A. N.
Ikot
, and
S.
Zarrinkamar
, “
Dirac equation under scalar and vector generalized isotonic oscillators and Cornell tensor interaction
,”
Adv. High Energy Phys.
2014
,
831938
.
9.
E. S.
Rodrigues
,
A. F.
de Lima
, and
R.
de Lima Rodrigues
, “
Dirac equation with vector and scalar potentials via SUSY QM
,” arXiv:math-ph/1301.6148.
10.
A.
Arda
and
R.
Sever
, “
Bound-state solutions of Dirac equation for Kratzer potential with pseudoscalar-Coulomb term
,”
Eur. Phys. J. Plus
134
,
29
(
2019
).
11.
J.
Ginocchio
, “
Relativistic symmetries in nuclei and hadrons
,”
Phys. Rep.
414
,
165
(
2005
).
12.
L. P.
de Oliveira
and
L. B.
Castro
, “
Fermions in the background of mixed vector-scalar-pseudoscalar square potentials
,”
Ann. Phys.
364
,
99
(
2016
).
13.
A. I.
Breev
and
A. V.
Shapovalov
, “
The Dirac equation in an external electromagnetic field: Symmetry algebra and exact integration
,”
J. Phys.: Conf. Ser.
670
,
012015
(
2016
).
14.
W. A.
Yahya
and
K. J.
Oyewumi
, “
Bound state solutions of the Dirac equation for the trigonometric and hyperbolic Scarf–Grosche potentials using the Nikiforov–Uvarov method
,”
J. Math. Phys.
54
,
013508
(
2013
).
15.
H.
Karayer
, “
Analytical solution of the Dirac equation for the hyperbolic potential by the extended Nikiforov–Uvarov method
,”
Eur. Phys. J. Plus
134
,
452
(
2019
).
16.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
17.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
18.
A.
Gallerati
, “
Graphene properties from curved space Dirac equation
,”
Eur. Phys. J. Plus
134
,
202
(
2019
).
19.
L.
Andrianopoli
,
B. L.
Cerchiai
,
R.
D’Auria
,
A.
Gallerati
,
R.
Noris
,
M.
Trigiante
, and
J.
Zanelli
, “N=1
extended D = 4 supergravity, unconventional SUSY and graphene
,”
J. High Energy Phys.
2020
,
84
.
20.
G.
Junker
,
Supersymmetric Methods in Quantum and Statistical Physics
(
Springer
,
1996
).
21.
B.
Bagchi
,
Supersymmetry in Quantum and Classical Mechanics
(
Chapman and Hall; CRC
,
Boca Raton
,
2000
).
22.
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
,
Supersymmetry and Quantum Mechanics
(
World Scientific
,
2001
).
23.
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
, “
Supersymmetry and quantum mechanics
,”
Phys. Rep.
251
,
267
(
1995
).
24.
D. J.
Fernández
, “
Supersymmetric quantum mechanics
,”
AIP Conf. Proc.
1287
,
3
(
2010
).
25.
A.
Hirshfeld
,
The Supersymmetric Dirac Equation
(
World Scientific
,
Singapore
,
2011
).
26.
A.
Gangopadhyaya
,
J.
Mallow
, and
C.
Rasinariu
,
Supersymmetric Quantum Mechanics: An Introduction
(
World Scientific
,
Singapore
,
2017
).
27.
A.
Contreras-Astorga
and
A.
Schulze-Halberg
, “
The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials
,”
J. Math. Phys.
55
,
103506
(
2014
).
28.
D. D.
Kizilirmak
and
Ş.
Kuru
, “
The solutions of Dirac equation on the hyperboloid under perpendicular magnetic fields
,”
Phys. Scr.
96
,
025806
(
2021
).
29.
A. D.
Alhaidari
, “
Generalized spin and pseudo-spein symmetry: Relativistic extension of supersymmetric quantum mechanics
,”
Phys. Lett. B
699
,
309
(
2011
).
30.
G.
Junker
, “
Supersymmetric Dirac–Hamiltonians in (1 + 1) dimensions revisited
,”
Eur. Phys. J. Plus
135
,
464
(
2020
).
31.
A. M.
Ishkhanyan
, “
Exact solution of the 1D Dirac equation for the inverse-square-root potential 1/√x
,”
Z. Naturforsch., A
75
,
771
(
2020
).
32.
R. L.
Hall
and
Ö.
Yeşiltaş
, “
Supersymmetric analysis for the Dirac equation with spin-symmetric and pseudo-spin-symmetric interactions
,”
Int. J. Mod. Phys. E
19
,
1923
(
2010
).
33.
I. I.
Rabi
, “
Das freie Elektron im homogenen magnetfeld nach der diracschen theorie
,”
Z. Phys.
49
,
507
(
1928
).
34.
C. L.
Ching
,
C. X.
Yeo
, and
W. K.
Ng
, “
Non-relativistic anti-Snyder model and some applications
,”
Int. J. Mod. Phys. A
32
,
1750009
(
2017
).
35.
A. A.
Andrianov
,
M. V.
Ioffe
, and
D. N.
Nishnianidze
,
Theor. Math. Phys.
104
,
1129
(
1995
).
36.
A. A.
Andrianov
,
M. V.
Ioffe
, and
V. P.
Spiridonov
,
Phys. Lett. A
174
,
273
(
1993
).
37.
M.
Castillo-Celeita
and
D. J.
Fernández C
, “
Dirac electron in graphene with magnetic fields arising from first-order intertwining operators
,”
J. Phys. A: Math. Theor.
53
,
035302
(
2020
).
38.
V. R.
Khalilov
and
K. E.
Lee
, “
Planar massless fermions in Coulomb and Aharonov–Bohm potentials
,”
Int. J. Mod. Phys. A
27
,
1250169
(
2012
).
39.
J. L.
Figueiredo
,
J. P.
Bizarro
, and
H.
Tercas
, “
Wigner description of massless Dirac plasmas
,” arXiv:2012.15148.
40.
F.
Calogero
,
Isochronous Systems
(
Oxford University Press
,
2008
).
41.
M.
Urabe
, “
Potential forces which yield periodic motions of a fixed period
,”
J. Math. Mech.
10
,
569
(
1961
).
42.
F. H.
Stillinger
and
D. K.
Stillinger
, “
Pseudoharmonic oscillators and inadequacy of semiclassical quantization
,”
J. Phys. Chem.
93
,
6890
(
1989
).
43.
J.
Dorignac
, “
On the quantum spectrum of isochronous potentials
,”
J. Phys. A: Math. Gen.
38
,
6183
(
2005
).
44.
A.
Sfecci
, “
From isochronous potentials to isochronous systems
,”
J. Diff. Equn.
258
,
1791
(
2015
).
45.
P. K.
Panigrahi
and
U. P.
Sukhatme
, “
Singular superpotentials in supersymmetric quantum mechanics
,”
Phys. Lett. A
178
,
251
(
1993
).
46.
S.
Flügge
,
Practical Quantum Mechanics
(
Springer-Verlag
,
Berlin, Heidelberg
,
1971
).
You do not currently have access to this content.