In this paper, we continue our study [B. Dodson, A. Soffer, and T. Spencer, J. Stat. Phys. 180, 910 (2020)] of the nonlinear Schrödinger equation (NLS) with bounded initial data which do not vanish at infinity. Local well-posedness on R was proved for real analytic data. Here, we prove global well-posedness for the 1D NLS with initial data lying in Lp for any 2 < p < , provided that the initial data are sufficiently smooth. We do not use the complete integrability of the cubic NLS.

1.
B.
Dodson
,
A.
Soffer
, and
T.
Spencer
, “
The nonlinear Schrödinger equation on Z and R with bounded initial data: Examples and conjectures
,”
J. Stat. Phys.
180
,
910
(
2020
).
2.
T.
Cazenave
,
Semilinear Schrodinger Equations
(
American Mathematical Society
,
2003
), Vol. 10.
3.
B.
Dodson
,
Defocusing Nonlinear Schrödinger Equations
(
Cambridge University Press
,
2019
), Vol. 217.
4.
T.
Tao
,
Nonlinear Dispersive Equations: Local and Global Analysis
(
American Mathematical Society
,
2006
), Vol. 106.
5.
T.
Oh
, “
On nonlinear Schrödinger equations with almost periodic initial data
,”
SIAM J. Math. Anal.
47
,
1253
1270
(
2015
).
6.
D.
Damanik
and
M.
Goldstein
, “
On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
,”
J. Am. Math. Soc.
29
,
825
856
(
2016
).
7.
A. B.
de Monvel
and
I.
Egorova
, “
On solutions of nonlinear Schrödinger equations with Cantor-type spectrum
,”
J. Anal. Math.
72
,
1
20
(
1997
).
8.
T.
Oh
, “
Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
,”
Commun. Pure Appl. Anal.
14
,
1563
1580
(
2015
).
9.
B.
Harrop-Griffiths
,
R.
Killip
, and
M.
Visan
, “
Sharp well-posedness for the cubic NLS and mKdV in Hs(R)
,” arXiv:2003.05011 (
2020
).
10.
J.
Bourgain
, “
Refinements of Strichartz’s inequality and applications to 2D-NLS with critical nonlinearity
,”
Int. Math. Res. Not.
1998
,
253
283
.
11.
J.
Bourgain
, “
Invariant measures for the 2D-defocusing nonlinear Schrödinger equation
,”
Commun. Math. Phys.
176
,
421
445
(
1996
).
12.
A.
Vargas
and
L.
Vega
, “
Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm
,”
J. Math. Pures Appl.
80
,
1029
1044
(
2001
).
13.
Á.
Bényi
,
T.
Oh
, and
O.
Pocovnicu
, “
Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on R3
,”
Trans. Am. Math. Soc., Ser. B
6
,
114
160
(
2019
).
14.
T.
Oh
,
O.
Pocovnicu
, and
N.
Tzvetkov
, “
Probabilistic local well-posedness of the cubic nonlinear wave equation in negative sobolev spaces
,” arXiv:1904.06792 (
2019
).
15.
N.
Burq
and
N.
Tzvetkov
, “
Probabilistic well-posedness for the cubic wave equation
,”
J. Eur. Math. Soc.
16
,
1
30
(
2013
).
16.
B.
Dodson
, “
Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space
,” arXiv:2004.09618 (
2020
).
17.
R.
Hyakuna
, “
Local and global well-posedness, and Lp′-decay estimates for 1D nonlinear Schrödinger equations with Cauchy data in Lp
,”
J. Funct. Anal.
278
,
108511
(
2020
).
18.
Y.
Zhou
, “
Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space Ws,p for p < 2
,”
Trans. Am. Math. Soc.
362
,
4683
4694
(
2010
).
19.
R. S.
Strichartz
, “
Restrictions of fourier transforms to quadratic surfaces and decay of solutions of wave equations
,”
Duke Math. J.
44
,
705
714
(
1977
).
20.
J.
Bourgain
,
Global Solutions of Nonlinear Schrodinger Equations
(
American Mathematical Society
,
1999
), Vol. 46.
You do not currently have access to this content.