Using the three ball inequality, we adapt the elegant ideas of Carleman and Domar from complex analysis to linear elliptic partial differentialequations and generalize the classical Levinson’s loglog theorem.
REFERENCES
1.
T.
Carleman
, “Extension d’un théorème de liouville
,” Acta Math.
48
, 363
–366
(1926
).2.
N.
Levinson
, Gap and Density Theorems
(American Mathematical Society Colloquium Publications
, New York
, 1940
), p. 26
.3.
Y.
Domar
, “On the existence of a largest subharmonic minorant of a given function
,” Ark. Mat.
3
(5
), 429
–440
(1958
).4.
Y.
Domar
, “Uniform boundness in families related to subharmonic functions
,” J. London Math. Soc.
s2-38
, 485
–491
(1988
).5.
P.
Koosis
, The Logarithmic Integral. I
, Cambridge Studies in Advanced Mathematics Vol. 12 (Cambridge University Press
, Cambridge
, 1988
).6.
A.
Beurling
, “Analytic continuation across a linear boundary
,” Acta Math.
128
, 153
–182
(1971
).7.
A.
Rashkovskii
, “On radial projection of harmonic measure
,” in Operator Theory and Subharmonic Functions
, edited by V. A.
Marchenko
(Naukova Dumka
, Kyiv
, 1991
), pp. 95
–102
(in Russian).8.
A.
Rashkovskii
, “Classical and new loglog theorems
,” Expo. Math.
27
(4
), 271
–287
(2009
).9.
F.
Wolf
, “On majorants of subharmonic and analytic functions
,” Bull. Am. Math. Soc.
49
, 952
(1942
).10.
N.
Sjöberg
, “Sur les minorantes sousharmoniques d'une fonctiondonnÍe
,” Congrѐs des Math. Scand., Helsingfors
1938
, 309
–319
.11.
V.
Matsaev
, “On the growth of entire functions that admit a certain estimate from below
,” Dokl. Akad. Nauk. SSSR
132
(2
), 283
–286
(1960
)V.
Matsaev
[Sov. Math. Dokl.
1
, 548
–552
(1960
) (in Russian)].12.
V.
Matsaev
and E.
Mogulskii
, “A division theorem for analytic functions with a given majorant and some of its applications
,” Zap. Nauchn. Semin. LOMI
56
, 73
–89
(1976
) (in Russian).13.
S. J.
Gardiner
and D.
Khavinson
, “Boundary behaviour of universal Taylor series
,” C. R. Math.
352
(2
), 99
–103
(2014
).14.
A.
Logunov
, “On the higher dimensional harmonic analog of the Levinson loglog theorem
,” C. R. Math.
352
(11
), 889
–893
(2014
).15.
E. G.
Sitnikova
, “A three spheres theorem for an elliptic equation of high order
,” Math. USSR-Sb.
11
(2
), 189
–195
(1970
).16.
N.
Garofalo
and F.-H.
Lin
, “Monotonicity properties of variational integrals, Ap weights and unique continuation
,” Indiana Univ. Math. J.
35
, 245
–268
(1986
).17.
N.
Garofalo
and F.-H.
Lin
, “Unique continuation for elliptic operators: A geometric-variational approach
,” Commun. Pure Appl. Math.
40
, 347
–366
(1987
).18.
K.
Miller
, “Nonunique continuation for uniformly parabolic and elliptic equations in selfadjoint divergence form with Holder continuous coefficients
,” Bull. Am. Math. Soc.
79
, 350
–354
(1973
).19.
V. A.
Kondratiev
and E. M.
Landis
, “Qualitative theory of second order linear partial differential equations
,” in Partial Differential Equations: 3
, Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki, Fundamental’nye Napravleniya Vol. 32 (VINITI
, Moscow
, 1988
), pp. 99
–215
.20.
H.
Donnelly
and C.
Fefferman
, “Growth and geometry of eigenfunctions of the Laplacian
,” in Analysis and Partial Differential Equations
, Lecture Notes in Pure and Applied Mathematics Vol. 122 (Dekker
, New York
, 1990
), pp. 635
–655
.21.
A.
Logunov
and E.
Malinnikova
, “Quantitative propagation of smallness for solutions of elliptic equations
,” in Proceedings of the International Congress of Mathematicians, Rio de Janeiro
(World Scientific Publishing Co. Pte Ltd.
, 2018
), pp. 2357
–2378
.22.
A.
Logunov
and E.
Malinnikova
, “Lecture notes on quantitative uniquecontinuation for solutions of second order elliptic equations
,” in HarmonicAnalysis and Application
, IAS/Park City Mathematics Series (American Mathermatical Society
, 2020
), Vol. 27, pp. 1079
-2020
.23.
I.
Kukavica
, “Quantitative uniqueness for second-order elliptic operators
,” Duke Math. J.
91
(2
), 225
–240
(1998
).24.
L.
Hormander
, Linear Partial Differential Operators
(Springer Berlin Heidelberg
, New York
, 1963
).25.
P.
Ebenfelt
and H. S.
Shapiro
, “A quasi maximum principle for holomorphic solutions of partial differential equations in Cn
,” J. Funct. Anal.
146
(1
), 27
–61
(1997
).26.
D.
Khavinson
and E.
Lundberg
, Linear Holomorphic Partial Differential Equations and Classical Potential Theory
, Mathematical Surveys and Monographs, edited by E. Lundberg (Amer. Math. Soc.
, 2018
), Vol. 232, p. 232
.27.
H.
Donnelly
and C.
Fefferman
, “Nodal sets of eigenfunctions on Riemannian manifolds
,” Invent. Math.
93
, 161
–183
(1988
).28.
S.
Vessella
, “A continuous dependence result in the analytic continuation problem
,” Forum Math.
11
, 695
–703
(1999
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.