A double field theory algebroid (DFT algebroid) is a special case of the metric (or Vaisman) algebroid, shown to be relevant in understanding the symmetries of double field theory. In particular, a DFT algebroid is a structure defined on a vector bundle over doubled spacetime equipped with the C-bracket of double field theory. In this paper, we give the definition of a DFT algebroid as a curved L∞-algebra and show how implementation of the strong constraint of double field theory can be formulated as an L∞-algebra morphism. Our results provide a useful step toward coordinate invariant descriptions of double field theory and the construction of the corresponding sigma-model.
REFERENCES
1.
A. A.
Tseytlin
, “Duality symmetric formulation of string world sheet dynamics
,” Phys. Lett. B
242
, 163
(1990
).2.
W.
Siegel
, “Two vierbein formalism for string inspired axionic gravity
,” Phys. Rev. D
47
, 5453
(1993
); arXiv:hep-th/9302036.3.
W.
Siegel
, “Superspace duality in low-energy superstrings
,” Phys. Rev. D
48
, 2826
(1993
); arXiv:hep-th/9305073.4.
C.
Hull
and B.
Zwiebach
, “Double field theory
,” J. High Energy Phys.
2009
, 099
; arXiv:0904.4664 [hep-th].5.
A.
Coimbra
, C.
Strickland-Constable
, and D.
Waldram
, “Supergravity as generalised geometry I: Type II theories
,” J. High Energy Phys.
2011
, 091
; arXiv:1107.1733 [hep-th].6.
C.
Hull
and B.
Zwiebach
, “The gauge algebra of double field theory and Courant brackets
,” J. High Energy Phys.
2009
, 090
; arXiv:0908.1792 [hep-th].7.
T. J.
Courant
, “Dirac manifolds
,” Trans. Am. Math. Soc.
319
, 631
(1990
).8.
Z.-J.
Liu
, A.
Weinstein
, and P.
Xu
, “Manin triples for Lie bialgebroids
,” J. Differ. Geom.
45
, 547
(1997
); arXiv:dg-ga/9508013.9.
10.
A.
Deser
and C.
Sämann
, “Extended Riemannian geometry I: Local double field theory
,” Ann. Henri Poincare
19
, 2297
(2018
); arXiv:1611.02772 [hep-th].11.
A.
Chatzistavrakidis
, L.
Jonke
, F. S.
Khoo
, and R. J.
Szabo
, “Double field theory and membrane sigma-models
,” J. High Energy Phys.
2018
, 015
; arXiv:1802.07003 [hep-th].12.
I.
Vaisman
, “On the geometry of double field theory
,” J. Math. Phys.
53
, 033509
(2012
); arXiv:1203.0836 [math.DG].13.
B.
Zwiebach
, “Closed string field theory: Quantum action and the B-V master equation
,” Nucl. Phys. B
390
, 33
(1993
); arXiv:hep-th/9206084.14.
T.
Lada
and J.
Stasheff
, “Introduction to SH Lie algebras for physicists
,” Int. J. Theor. Phys.
32
, 1087
(1993
); arXiv:hep-th/9209099.15.
L.
Freidel
, F. J.
Rudolph
, and D.
Svoboda
, “Generalised kinematics for double field theory
,” J. High Energy Phys.
2017
, 175
; arXiv:1706.07089 [hep-th].16.
D.
Svoboda
, “Algebroid structures on para-Hermitian manifolds
,” J. Math. Phys.
59
, 122302
(2018
); arXiv:1802.08180 [math.DG].17.
L.
Freidel
, F. J.
Rudolph
, and D.
Svoboda
, “A unique connection for Born geometry
,” Commun. Math. Phys.
372
, 119
(2019
); arXiv:1806.05992 [hep-th].18.
H.
Mori
and S.
Sasaki
, “More on doubled aspects of algebroids in double field theory
,” J. Math. Phys.
61
(12
), 123504
(2020
); arXiv:2008.00402 [math-ph].19.
V. E.
Marotta
and R. J.
Szabo
, “Born sigma-models for para-Hermitian manifolds and generalized T-duality
,”arXiv:1910.09997 [hep-th].20.
D.
Roytenberg
and A.
Weinstein
, “Courant algebroids and strongly homotopy Lie algebras
,” Lett. Math. Phys.
46
, 81
(1998
); arXiv:math/9802118 [math.QA].21.
C. J.
Grewcoe
and L.
Jonke
, “Courant sigma model and L∞-algebras
,” Fortsch. Phys.
68
, 2000021
(2020
); arXiv:2001.11745 [hep-th].22.
M.
Dubois-Violette
and P. W.
Michor
, “A common generalization of the Frölicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields
,” Indag. Math.
6
, 51
(1995
); arXiv:alg-geom/9401006 [math.AG].23.
J.
Chuang
, A.
Lazarev
, and W. H.
Mannan
, “Coalgebras: Homotopy theory and Koszul duality
,” Homol. Homotopy Appl.
18
, 303
(2016
); arXiv:1403.0774 [math.AT].24.
H.
Kajiura
and J.
Stasheff
, “Homotopy algebras inspired by classical open-closed string field theory
,” Commun. Math. Phys.
263
, 553
–581
(2006
); arXiv:math/0410291 [math.QA].25.
C. J.
Grewcoe
and L.
Jonke
, “L∞-algebras and membrane sigma models
,” in Proceedings of Corfu Summer Institute 2019
(Sissa Medialab.
, 2020
), p. 156
; arXiv:2004.14087 [hep-th].26.
O.
Hohm
and B.
Zwiebach
, “L∞ algebras and field theory
,” Fortsch. Phys.
65
(3-4
), 1700014
(2017
); arXiv:1701.08824 [hep-th].27.
R.
Blumenhagen
, M.
Fuchs
, F.
Haßler
, D.
Lüst
, and R.
Sun
, “Non-associative deformations of geometry in double field theory
,” J. High Energy Phys.
2014
, 141
; arXiv:1312.0719 [hep-th].28.
R.
Blumenhagen
, I.
Brunner
, V.
Kupriyanov
, and D.
Lüst
, “Bootstrapping non-commutative gauge theories from L∞ algebras
,” J. High Energy Phys.
2018
, 097
; arXiv:1803.00732 [hep-th].29.
G.
Barnich
, F.
Brandt
, and M.
Henneaux
, “Local BRST cohomology in gauge theories
,” Phys. Rep.
338
, 439
(2000
); arXiv:hep-th/0002245.30.
M.
Grigoriev
and A.
Kotov
, “Presymplectic AKSZ formulation of Einstein gravity
,” arXiv:2008.11690 [hep-th].31.
A.
Chatzistavrakidis
, L.
Jonke
, F. S.
Khoo
, and R. J.
Szabo
, “The algebroid structure of double field theory
,” in Proceedings of Corfu Summer Institute 2019
(Sissa Medialab.
, 2019
), p. 132
; arXiv:1903.01765 [hep-th].32.
D.
Geissbühler
, D.
Marqués
, C.
Núñez
, and V.
Penas
, “Exploring double field theory
,” J. High Energy Phys.
2013
, 101
; arXiv:1304.1472 [hep-th].33.
M.
Hansen
and T.
Strobl
, “First class constrained systems and twisting of Courant algebroids by a closed 4-form
,” in Fundamental Interactions - A Memorial Volume for Wolfgang Kummer
(World Science
, 2009
), p. 115
.; arXiv:0904.0711 [hep-th].© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.