A double field theory algebroid (DFT algebroid) is a special case of the metric (or Vaisman) algebroid, shown to be relevant in understanding the symmetries of double field theory. In particular, a DFT algebroid is a structure defined on a vector bundle over doubled spacetime equipped with the C-bracket of double field theory. In this paper, we give the definition of a DFT algebroid as a curved L-algebra and show how implementation of the strong constraint of double field theory can be formulated as an L-algebra morphism. Our results provide a useful step toward coordinate invariant descriptions of double field theory and the construction of the corresponding sigma-model.

1.
A. A.
Tseytlin
, “
Duality symmetric formulation of string world sheet dynamics
,”
Phys. Lett. B
242
,
163
(
1990
).
2.
W.
Siegel
, “
Two vierbein formalism for string inspired axionic gravity
,”
Phys. Rev. D
47
,
5453
(
1993
); arXiv:hep-th/9302036.
3.
W.
Siegel
, “
Superspace duality in low-energy superstrings
,”
Phys. Rev. D
48
,
2826
(
1993
); arXiv:hep-th/9305073.
4.
C.
Hull
and
B.
Zwiebach
, “
Double field theory
,”
J. High Energy Phys.
2009
,
099
; arXiv:0904.4664 [hep-th].
5.
A.
Coimbra
,
C.
Strickland-Constable
, and
D.
Waldram
, “
Supergravity as generalised geometry I: Type II theories
,”
J. High Energy Phys.
2011
,
091
; arXiv:1107.1733 [hep-th].
6.
C.
Hull
and
B.
Zwiebach
, “
The gauge algebra of double field theory and Courant brackets
,”
J. High Energy Phys.
2009
,
090
; arXiv:0908.1792 [hep-th].
7.
T. J.
Courant
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
(
1990
).
8.
Z.-J.
Liu
,
A.
Weinstein
, and
P.
Xu
, “
Manin triples for Lie bialgebroids
,”
J. Differ. Geom.
45
,
547
(
1997
); arXiv:dg-ga/9508013.
9.
P.
Ševera
, “
Letters to Alan Weinstein about Courant algebroids
,” arXiv:1707.00265 [math.DG].
10.
A.
Deser
and
C.
Sämann
, “
Extended Riemannian geometry I: Local double field theory
,”
Ann. Henri Poincare
19
,
2297
(
2018
); arXiv:1611.02772 [hep-th].
11.
A.
Chatzistavrakidis
,
L.
Jonke
,
F. S.
Khoo
, and
R. J.
Szabo
, “
Double field theory and membrane sigma-models
,”
J. High Energy Phys.
2018
,
015
; arXiv:1802.07003 [hep-th].
12.
I.
Vaisman
, “
On the geometry of double field theory
,”
J. Math. Phys.
53
,
033509
(
2012
); arXiv:1203.0836 [math.DG].
13.
B.
Zwiebach
, “
Closed string field theory: Quantum action and the B-V master equation
,”
Nucl. Phys. B
390
,
33
(
1993
); arXiv:hep-th/9206084.
14.
T.
Lada
and
J.
Stasheff
, “
Introduction to SH Lie algebras for physicists
,”
Int. J. Theor. Phys.
32
,
1087
(
1993
); arXiv:hep-th/9209099.
15.
L.
Freidel
,
F. J.
Rudolph
, and
D.
Svoboda
, “
Generalised kinematics for double field theory
,”
J. High Energy Phys.
2017
,
175
; arXiv:1706.07089 [hep-th].
16.
D.
Svoboda
, “
Algebroid structures on para-Hermitian manifolds
,”
J. Math. Phys.
59
,
122302
(
2018
); arXiv:1802.08180 [math.DG].
17.
L.
Freidel
,
F. J.
Rudolph
, and
D.
Svoboda
, “
A unique connection for Born geometry
,”
Commun. Math. Phys.
372
,
119
(
2019
); arXiv:1806.05992 [hep-th].
18.
H.
Mori
and
S.
Sasaki
, “
More on doubled aspects of algebroids in double field theory
,”
J. Math. Phys.
61
(
12
),
123504
(
2020
); arXiv:2008.00402 [math-ph].
19.
V. E.
Marotta
and
R. J.
Szabo
, “
Born sigma-models for para-Hermitian manifolds and generalized T-duality
,”arXiv:1910.09997 [hep-th].
20.
D.
Roytenberg
and
A.
Weinstein
, “
Courant algebroids and strongly homotopy Lie algebras
,”
Lett. Math. Phys.
46
,
81
(
1998
); arXiv:math/9802118 [math.QA].
21.
C. J.
Grewcoe
and
L.
Jonke
, “
Courant sigma model and L-algebras
,”
Fortsch. Phys.
68
,
2000021
(
2020
); arXiv:2001.11745 [hep-th].
22.
M.
Dubois-Violette
and
P. W.
Michor
, “
A common generalization of the Frölicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields
,”
Indag. Math.
6
,
51
(
1995
); arXiv:alg-geom/9401006 [math.AG].
23.
J.
Chuang
,
A.
Lazarev
, and
W. H.
Mannan
, “
Coalgebras: Homotopy theory and Koszul duality
,”
Homol. Homotopy Appl.
18
,
303
(
2016
); arXiv:1403.0774 [math.AT].
24.
H.
Kajiura
and
J.
Stasheff
, “
Homotopy algebras inspired by classical open-closed string field theory
,”
Commun. Math. Phys.
263
,
553
581
(
2006
); arXiv:math/0410291 [math.QA].
25.
C. J.
Grewcoe
and
L.
Jonke
, “
L-algebras and membrane sigma models
,” in
Proceedings of Corfu Summer Institute 2019
(
Sissa Medialab.
,
2020
), p.
156
; arXiv:2004.14087 [hep-th].
26.
O.
Hohm
and
B.
Zwiebach
, “
L algebras and field theory
,”
Fortsch. Phys.
65
(
3-4
),
1700014
(
2017
); arXiv:1701.08824 [hep-th].
27.
R.
Blumenhagen
,
M.
Fuchs
,
F.
Haßler
,
D.
Lüst
, and
R.
Sun
, “
Non-associative deformations of geometry in double field theory
,”
J. High Energy Phys.
2014
,
141
; arXiv:1312.0719 [hep-th].
28.
R.
Blumenhagen
,
I.
Brunner
,
V.
Kupriyanov
, and
D.
Lüst
, “
Bootstrapping non-commutative gauge theories from L algebras
,”
J. High Energy Phys.
2018
,
097
; arXiv:1803.00732 [hep-th].
29.
G.
Barnich
,
F.
Brandt
, and
M.
Henneaux
, “
Local BRST cohomology in gauge theories
,”
Phys. Rep.
338
,
439
(
2000
); arXiv:hep-th/0002245.
30.
M.
Grigoriev
and
A.
Kotov
, “
Presymplectic AKSZ formulation of Einstein gravity
,” arXiv:2008.11690 [hep-th].
31.
A.
Chatzistavrakidis
,
L.
Jonke
,
F. S.
Khoo
, and
R. J.
Szabo
, “
The algebroid structure of double field theory
,” in
Proceedings of Corfu Summer Institute 2019
(
Sissa Medialab.
,
2019
), p.
132
; arXiv:1903.01765 [hep-th].
32.
D.
Geissbühler
,
D.
Marqués
,
C.
Núñez
, and
V.
Penas
, “
Exploring double field theory
,”
J. High Energy Phys.
2013
,
101
; arXiv:1304.1472 [hep-th].
33.
M.
Hansen
and
T.
Strobl
, “
First class constrained systems and twisting of Courant algebroids by a closed 4-form
,” in
Fundamental Interactions - A Memorial Volume for Wolfgang Kummer
(
World Science
,
2009
), p.
115
.; arXiv:0904.0711 [hep-th].
You do not currently have access to this content.