This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.
REFERENCES
1.
F.
Cantrijn
, “Vector fields generating analysis for classical dissipative systems
,” J. Math. Phys.
23
, 1589
–1595
(1982
).2.
F.
Cantrijn
, “Symplectic approach to nonconservative mechanics
,” J. Math. Phys.
25
, 271
–276
(1984
).3.
F.
Cantrijn
, J.
Cortés
, M.
De León
, and D. M.
De Diego
, “On the geometry of generalized Chaplygin systems
,” Math. Proc. Cambridge Philos. Soc.
132
, 323
–351
(2002
).4.
F.
Cantrijn
, M.
de León
, J. C.
Marrero
, and D.
Martín de Diego
, “Reduction of constrained systems with symmetries
,” J. Math. Phys.
40
, 795
–820
(1999
).5.
J.
Cortés
and M.
de León
, “Reduction and reconstruction of the dynamics of nonholonomic systems
,” J. Phys. A: Math. Theor
32
, 8615
–8645
(1999
).6.
C.
Godbillon
, Géométrie Différentielle et Mécanique Analytique
, Collection Méthodes (Hermann
, 1969
).7.
M.
de León
and P. R.
Rodrigues
, Methods of Differential Geometry in Analytical Mechanics
, North-Holland Mathematics Studies Vol. 158 (North-Holland
, Amsterdam; New York, NY
, 1989
).8.
L. Y.
Bahar
and H. G.
Kwatny
, “Extension of Noether’s theorem to constrained nonconservative dynamical systems
,” Int. J. Non-Linear Mech.
22
, 125
–138
(1987
).9.
E.
Noether
, “Invariant variation problems
,” Transp. Theory Stat. Phys.
1
, 186
–207
(1971
).10.
Y.
Kosmann-Schwarzbach
, The Noether Theorems
, Sources and Studies in the History of Mathematics and Physical Sciences (Springer
, New York
, 2011
).11.
Y.
Ne’eman
, “The impact of Emmy Noether’s theorems on XXIst century physics
,” in The Heritage of Emmy Noether
, Israel Mathematical Conference Proceedings Vol. 12 (Gelbart Research Institute for Mathematical Sciences, and Emmy Noether Research Institute of Mathematics, Bar-Ilan University
, 1996
), pp. 83
–101
.12.
G.
Marmo
and N.
Mukunda
, “Symmetries and constants of the motion in the Lagrangian formalism on TQ: Beyond point transformations
,” Nuovo Cimento B
92
, 1
–12
(1986
).13.
D. S.
Djukic
and B. D.
Vujanovic
, “Noether’s theory in classical nonconservative mechanics
,” Acta Mech.
23
, 17
–27
(1975
).14.
W.
Sarlet
and F.
Cantrijn
, “Generalizations of Noether’s theorem in classical mechanics
,” SIAM Rev.
23
, 467
–494
(1981
).15.
J. F.
Cariñena
and H.
Figueroa
, “A geometrical version of Noether’s theorem in supermechanics
,” Rep. Math. Phys.
34
, 277
–303
(1994
).16.
J. F.
Carineña
, C.
López
, and E.
Martínez
, “A new approach to the converse of Noether’s theorem
,” J. Phys. A: Math. Theor
22
, 4777
–4786
(1989
).17.
J. F.
Carineña
and E.
Martínez
, “Symmetry theory and Lagrangian inverse problem for time-dependent second-order differential equations
,” J. Phys. A: Math. Theor
22
, 2659
–2665
(1989
).18.
C.
Ferrario
and A.
Passerini
, “Symmetries and constants of motion for constrained Lagrangian systems: A presymplectic version of the Noether theorem
,” J. Phys. A: Math. Theor
23
, 5061
–5081
(1990
).19.
M.
de León
and D.
Martín de Diego
, “Classification of symmetries for higher order Lagrangian systems
,” 9
(1
), 32
–36
(1994
).20.
M.
de León
and D. M.
de Diego
, “Symmetries and constants of the motion for higher-order Lagrangian systems
,” J. Math. Phys.
36
, 4138
–4161
(1995
).21.
M.
de Léon
and D.
Martín de Diego
, “Symmetries and constants of the motion for singular Lagrangian systems
,” Int. J. Theor. Phys.
35
, 975
–1011
(1996
).22.
F. A.
Lunev
, “An analogue of the Noether theorem for non-Noether and nonlocal symmetries
,” Theor. Math. Phys.
84
, 205
–210
(1990
).23.
D. N. K.
Marwat
, A. H.
Kara
, and F. M.
Mahomed
, “Symmetries, conservation laws and multipliers via partial Lagrangians and Noether’s theorem for classically non-variational problems
,” Int. J. Theor. Phys.
46
, 3022
–3029
(2007
).24.
G.
Prince
, “Toward a classification of dynamical symmetries in classical mechanics
,” Bull. Aust. Math. Soc.
27
, 53
–71
(2009
).25.
G.
Prince
, “A complete classification of dynamical symmetries in classical mechanics
,” Bull. Aust. Math. Soc.
32
, 299
–308
(1985
).26.
N.
Román-Roy
, “A summary on symmetries and conserved quantities of autonomous Hamiltonian systems
,” J. Geom. Mech.
12
, 541
–551
(2020
).27.
W.
Sarlet
, “Note on equivalent Lagrangians and symmetries
,” J. Phys. A: Math. Theor
16
, L229
–L233
(1983
).28.
A. J.
van der Schaft
, “Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces
,” J. Math. Phys.
24
, 2095
–2101
(1983
).29.
A. J.
van der Schaft
, “Hamiltonian dynamics with external forces and observations
,” Math. Systems Theory
15
, 145
–168
(1981
).30.
H. J. W.
Strutt
, “Some general theorems relating to vibrations
,” Proc. London Math. Soc.
s1-4
, 357
–368
(1871
).31.
H.
Goldstein
, Mecánica Clásica (Reverte)
(Editorial Reverté
, 2000
), ISBN: 84-291-4306-8, Google-Books-ID: vf2JiybeDc4C.32.
33.
A. I.
Lurie
, Analytical Mechanics
, Foundations of Engineering Mechanics (Springer Berlin Heidelberg
, 2002
), ISBN: 978-3-540-45677-3.34.
E.
Minguzzi
, “Rayleigh’s dissipation function at work
,” Eur. J. Phys.
36
, 035014
(2015
).35.
R.
Abraham
and J.
Marsden
, Foundations of Mechanics
, AMS Chelsea Publishing (American Mathematical Society
, 2008
).36.
K.
Yano
and S.
Ishihara
, Tangent and Cotangent Bundles: Differential Geometry
(Marcel Dekker, Inc.
, 1973
), OCLC: 859811351.37.
K.
Yano
and S.
Ishihara
, “Almost complex structures induced in tangent bundles
,” Kodai Math. Sem. Rep.
19
, 1
–27
(1967
).38.
G. K.
Batchelor
, , Cambridge Mathematical Library (Cambridge University Press
, 2000
), ISBN: 9780511800955.39.
G.
Falkovich
, (Cambridge University Press
, 2011
), ISBN: 9780511794353, OCLC: ocn701021294.40.
J.
Marsden
and A.
Weinstein
, “Reduction of symplectic manifolds with symmetry
,” Rep. Math. Phys.
5
, 121
–130
(1974
).41.
J.-P.
Ortega
and T. S.
Ratiu
, Momentum Maps and Hamiltonian Reduction
, Progress in Mathematics (Birkhäuser Boston
, 2004
), ISBN: 978-1-4757-3811-7.42.
J. E.
Marsden
and M.
West
, “Discrete mechanics and variational integrators
,” Acta Numer.
10
, 357
–514
(2001
).43.
J.
Marsden
, R.
Montgomery
, and T.
Ratiu
, , Memoirs of the American Mathematical Society Vol. 88 (American Mathematical Society
, 1990
), ISSN: 0065-9266, 1947-6221, Issue: 436.© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.