This paper is devoted to the study of mechanical systems subjected to external forces in the framework of symplectic geometry. We obtain Noether’s theorem for Lagrangian systems with external forces, among other results regarding symmetries and conserved quantities. We particularize our results for the so-called Rayleigh dissipation, i.e., external forces that are derived from a dissipation function, and illustrate them with some examples. Moreover, we present a theory for the reduction in Lagrangian systems subjected to external forces, which are invariant under the action of a Lie group.

1.
F.
Cantrijn
, “
Vector fields generating analysis for classical dissipative systems
,”
J. Math. Phys.
23
,
1589
1595
(
1982
).
2.
F.
Cantrijn
, “
Symplectic approach to nonconservative mechanics
,”
J. Math. Phys.
25
,
271
276
(
1984
).
3.
F.
Cantrijn
,
J.
Cortés
,
M.
De León
, and
D. M.
De Diego
, “
On the geometry of generalized Chaplygin systems
,”
Math. Proc. Cambridge Philos. Soc.
132
,
323
351
(
2002
).
4.
F.
Cantrijn
,
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Reduction of constrained systems with symmetries
,”
J. Math. Phys.
40
,
795
820
(
1999
).
5.
J.
Cortés
and
M.
de León
, “
Reduction and reconstruction of the dynamics of nonholonomic systems
,”
J. Phys. A: Math. Theor
32
,
8615
8645
(
1999
).
6.
C.
Godbillon
,
Géométrie Différentielle et Mécanique Analytique
, Collection Méthodes (
Hermann
,
1969
).
7.
M.
de León
and
P. R.
Rodrigues
,
Methods of Differential Geometry in Analytical Mechanics
, North-Holland Mathematics Studies Vol. 158 (
North-Holland
,
Amsterdam; New York, NY
,
1989
).
8.
L. Y.
Bahar
and
H. G.
Kwatny
, “
Extension of Noether’s theorem to constrained nonconservative dynamical systems
,”
Int. J. Non-Linear Mech.
22
,
125
138
(
1987
).
9.
E.
Noether
, “
Invariant variation problems
,”
Transp. Theory Stat. Phys.
1
,
186
207
(
1971
).
10.
Y.
Kosmann-Schwarzbach
,
The Noether Theorems
, Sources and Studies in the History of Mathematics and Physical Sciences (
Springer
,
New York
,
2011
).
11.
Y.
Ne’eman
, “
The impact of Emmy Noether’s theorems on XXIst century physics
,” in
The Heritage of Emmy Noether
, Israel Mathematical Conference Proceedings Vol. 12 (
Gelbart Research Institute for Mathematical Sciences, and Emmy Noether Research Institute of Mathematics, Bar-Ilan University
,
1996
), pp.
83
101
.
12.
G.
Marmo
and
N.
Mukunda
, “
Symmetries and constants of the motion in the Lagrangian formalism on TQ: Beyond point transformations
,”
Nuovo Cimento B
92
,
1
12
(
1986
).
13.
D. S.
Djukic
and
B. D.
Vujanovic
, “
Noether’s theory in classical nonconservative mechanics
,”
Acta Mech.
23
,
17
27
(
1975
).
14.
W.
Sarlet
and
F.
Cantrijn
, “
Generalizations of Noether’s theorem in classical mechanics
,”
SIAM Rev.
23
,
467
494
(
1981
).
15.
J. F.
Cariñena
and
H.
Figueroa
, “
A geometrical version of Noether’s theorem in supermechanics
,”
Rep. Math. Phys.
34
,
277
303
(
1994
).
16.
J. F.
Carineña
,
C.
López
, and
E.
Martínez
, “
A new approach to the converse of Noether’s theorem
,”
J. Phys. A: Math. Theor
22
,
4777
4786
(
1989
).
17.
J. F.
Carineña
and
E.
Martínez
, “
Symmetry theory and Lagrangian inverse problem for time-dependent second-order differential equations
,”
J. Phys. A: Math. Theor
22
,
2659
2665
(
1989
).
18.
C.
Ferrario
and
A.
Passerini
, “
Symmetries and constants of motion for constrained Lagrangian systems: A presymplectic version of the Noether theorem
,”
J. Phys. A: Math. Theor
23
,
5061
5081
(
1990
).
19.
M.
de León
and
D.
Martín de Diego
, “
Classification of symmetries for higher order Lagrangian systems
,”
9
(
1
),
32
36
(
1994
).
20.
M.
de León
and
D. M.
de Diego
, “
Symmetries and constants of the motion for higher-order Lagrangian systems
,”
J. Math. Phys.
36
,
4138
4161
(
1995
).
21.
M.
de Léon
and
D.
Martín de Diego
, “
Symmetries and constants of the motion for singular Lagrangian systems
,”
Int. J. Theor. Phys.
35
,
975
1011
(
1996
).
22.
F. A.
Lunev
, “
An analogue of the Noether theorem for non-Noether and nonlocal symmetries
,”
Theor. Math. Phys.
84
,
205
210
(
1990
).
23.
D. N. K.
Marwat
,
A. H.
Kara
, and
F. M.
Mahomed
, “
Symmetries, conservation laws and multipliers via partial Lagrangians and Noether’s theorem for classically non-variational problems
,”
Int. J. Theor. Phys.
46
,
3022
3029
(
2007
).
24.
G.
Prince
, “
Toward a classification of dynamical symmetries in classical mechanics
,”
Bull. Aust. Math. Soc.
27
,
53
71
(
2009
).
25.
G.
Prince
, “
A complete classification of dynamical symmetries in classical mechanics
,”
Bull. Aust. Math. Soc.
32
,
299
308
(
1985
).
26.
N.
Román-Roy
, “
A summary on symmetries and conserved quantities of autonomous Hamiltonian systems
,”
J. Geom. Mech.
12
,
541
551
(
2020
).
27.
W.
Sarlet
, “
Note on equivalent Lagrangians and symmetries
,”
J. Phys. A: Math. Theor
16
,
L229
L233
(
1983
).
28.
A. J.
van der Schaft
, “
Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces
,”
J. Math. Phys.
24
,
2095
2101
(
1983
).
29.
A. J.
van der Schaft
, “
Hamiltonian dynamics with external forces and observations
,”
Math. Systems Theory
15
,
145
168
(
1981
).
30.
H. J. W.
Strutt
, “
Some general theorems relating to vibrations
,”
Proc. London Math. Soc.
s1-4
,
357
368
(
1871
).
31.
H.
Goldstein
,
Mecánica Clásica (Reverte)
(
Editorial Reverté
,
2000
), ISBN: 84-291-4306-8, Google-Books-ID: vf2JiybeDc4C.
32.
F.
Gantmakher
,
Lectures in Analytical Mechanics
(
MIR Publishers
,
1970
).
33.
A. I.
Lurie
,
Analytical Mechanics
, Foundations of Engineering Mechanics (
Springer Berlin Heidelberg
,
2002
), ISBN: 978-3-540-45677-3.
34.
E.
Minguzzi
, “
Rayleigh’s dissipation function at work
,”
Eur. J. Phys.
36
,
035014
(
2015
).
35.
R.
Abraham
and
J.
Marsden
,
Foundations of Mechanics
, AMS Chelsea Publishing (
American Mathematical Society
,
2008
).
36.
K.
Yano
and
S.
Ishihara
,
Tangent and Cotangent Bundles: Differential Geometry
(
Marcel Dekker, Inc.
,
1973
), OCLC: 859811351.
37.
K.
Yano
and
S.
Ishihara
, “
Almost complex structures induced in tangent bundles
,”
Kodai Math. Sem. Rep.
19
,
1
27
(
1967
).
38.
G. K.
Batchelor
, , Cambridge Mathematical Library (
Cambridge University Press
,
2000
), ISBN: 9780511800955.
39.
G.
Falkovich
, (
Cambridge University Press
,
2011
), ISBN: 9780511794353, OCLC: ocn701021294.
40.
J.
Marsden
and
A.
Weinstein
, “
Reduction of symplectic manifolds with symmetry
,”
Rep. Math. Phys.
5
,
121
130
(
1974
).
41.
J.-P.
Ortega
and
T. S.
Ratiu
,
Momentum Maps and Hamiltonian Reduction
, Progress in Mathematics (
Birkhäuser Boston
,
2004
), ISBN: 978-1-4757-3811-7.
42.
J. E.
Marsden
and
M.
West
, “
Discrete mechanics and variational integrators
,”
Acta Numer.
10
,
357
514
(
2001
).
43.
J.
Marsden
,
R.
Montgomery
, and
T.
Ratiu
, , Memoirs of the American Mathematical Society Vol. 88 (
American Mathematical Society
,
1990
), ISSN: 0065-9266, 1947-6221, Issue: 436.
You do not currently have access to this content.