We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well-known gap in the spectrum of the Laplacian on the upper half-plane with a hyperbolic metric. We make some conjectures about antibound states and make an interesting observation for the so-called rg-model where the underlying graph has r red and g green vertices and where any two vertices of different colors are connected by a single edge.
REFERENCES
1.
N.
Avni
, J.
Breuer
, and B.
Simon
, “Periodic Jacobi matrices on trees
,” Adv. Math
.
370
, 107241
(2020
).2.
N.
Avni
, J.
Breuer
, G.
Kalai
, and B.
Simon
, “Periodic boundary conditions for periodic Jacobi matrices on trees
,” arXiv:2011.05770.3.
J.
Banks
, J.
Garza-Vargas
, and S.
Mukherjee
, “Point spectrum of periodic operators on universal covering trees
,” arXiv:2008.03318.4.
J.
Garza-Vargas
and A.
Kulkarni
, “Spectra of infinite graphs via freeness with amalgamation
,” arXiv:1912.10137.5.
B.
Simon
, A Comprehensive Course in Analysis, Part 2: Basic Complex Analysis
(American Mathematical Society
, Providence, RI
, 2015
).6.
T.
Sunada
, “Group C*-algebras and the spectrum of a periodic Schrödinger operator on a manifold
,” Can. J. Math.
44
, 180
–193
(1992
).7.
K.
Aomoto
, “Point spectrum on a quasi homogeneous tree
,” Pac. J. Math.
147
, 231
–242
(1991
).8.
R. B.
Bapat
and T. E. S.
Raghavan
, Nonnegative Matrices and Applications
, Encyclopedia of Mathematics and its Applications Vol. 64 (Cambridge University Press
, Cambridge
, 1997
).9.
P. W.
Sy
and T.
Sunada
, “Discrete Schrödinger operators on a graph
,” Nagoya Math. J.
125
, 141
–150
(1992
).10.
W.
Kirsch
and B.
Simon
, “Comparison theorems for the gap of Schrödinger operators
,” J. Funct. Anal.
75
, 396
–410
(1987
).11.
R. L.
Frank
, B.
Simon
, and T.
Weidl
, “Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states
,” Commun. Math. Phys.
282
, 199
–208
(2008
).12.
C. G. J.
Jacobi
, “Zur theorie der variationsrechnung und der differentialgleichungen
,” J. Math. von Crelle
17
, 68
–82
(1837
).13.
M. Sh.
Birman
, “On the spectrum of singular boundary-value problems
,” Mat. Sb.
55
, 125
–174
(1961
), available at http://mi.mathnet.ru/eng/msb4754https://mathscinet.ams.org/mathscinet-getitem?mr=142896.14.
E.
Nelson
, “A quartic interaction in two dimensions
,” in Mathematical Theory of Elementary Particles
, edited by R.
Goodman
and I.
Segal
(MIT Press
, Cambridge, MA
, 1966
), pp. 69
–73
.15.
J.
Glimm
and A.
Jaffe
, Quantum Physics: A Functional Integral Point of View
(Springer-Verlag
, New York; Berlin
, 1981
).16.
B.
Simon
, The P(φ)2 Euclidean (Quantum) Field Theory
, Princeton Series in Physics (Princeton University Press
, Princeton, NJ
, 1974
).17.
M.
Keller
, Y.
Pinchover
, and F.
Pogorzelski
, “Optimal Hardy inequalities for Schrödinger operators on graphs
,” Commun. Math. Phys.
358
, 767
–790
(2018
).18.
M. L.
Goldberger
and K. M.
Watson
, Collision Theory
(John Wiley & Sons, Inc.
, New York; London; Sydney
, 1964
).19.
R. G.
Newton
, Scattering Theory of Waves and Particles
(Dover Publications, Inc.
, Mineola, NY
, 2002
);R. G.
Newton
Scattering Theory of Waves and Particles
, Reprint of the 2nd
ed. (Springer
, New York
, 1982
).20.
A.
Lubotzky
, R.
Phillips
, and P.
Sarnak
, “Ramanujan graphs
,” Combinatorica
8
, 261
–277
(1988
).21.
C. D.
Godsil
and B.
Mohar
, “Walk generating functions and spectral measures of infinite graphs
,” Linear Algebra Appl.
107
, 191
–206
(1988
).©2021 Authors. Published by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.