Let X be a (2 + 1)-dimensional globally hyperbolic spacetime with a Cauchy surface Σ whose universal cover is homeomorphic to R2. We provide empirical evidence suggesting that the Jones polynomial detects causality in X. We introduce a new invariant of certain tangles related to the Conway polynomial and prove that the Conway polynomial does not detect the connected sum of two Hopf links among relevant three-component links, which suggests that the Conway polynomial does not detect causality in the scenario described.

1.
V.
Chernov
,
G.
Martin
, and
I.
Petkova
, “
Khovanov homology and causality in spacetimes
,”
J. Math. Phys.
61
,
022503
(
2020
).
2.
J.
Natário
and
P.
Tod
, “
Linking, Legendrian linking and causality
,”
Proc. London Math. Soc.
88
(
3
),
251
272
(
2004
).
3.
V.
Chernov
and
S.
Nemirovski
, “
Legendrian links, causality, and the Low conjecture
,”
Geom. Funct. Anal.
19
,
1320
1333
(
2010
).
4.
D.
Bar-Natan
, “
On Khovanov’s categorification of the Jones polynomial
,”
Algebraic Geom. Topol.
2
,
337
370
(
2002
).
5.
L. H.
Kauffman
and
M.
Silvero
, “
Alexander-Conway polynomial state model and link homology
,”
J. Knot Theory Ramification
25
,
1640005
(
2016
).
6.
G.
Martin
, “
Khovanov homology detects T(2,6)
,” arXiv:2005.02893 (
2020
).
7.
J. A.
Baldwin
and
J. E.
Grigsby
, “
Categorified invariants and the braid group
,”
Proc. Am. Math. Soc.
143
,
2801
2814
(
2015
).
8.
S.
Eliahou
,
L. H.
Kauffman
, and
M. B.
Thistlethwaite
, “
Infinite families of links with trivial Jones polynomial
,”
Topology
42
,
155
169
(
2003
).
9.
C.
Livingston
and
A. H.
Moore
, “
Linkinfo: Table of link invariants
,” https://linkinfo.math.indiana.edu,
2020
.
10.
L. H.
Kauffman
, “
The Conway polynomial
,”
Topology
20
,
101
108
(
1981
).
11.
L. H.
Kauffman
, “
State models and the Jones polynomial
,”
Topology
26
,
395
407
(
1987
).
12.
A. S.
Sikora
, “
Tangle equations, the Jones conjecture, and quantum continued fractions
,” arXiv:2005.08162 [math.GT] (
2020
).
13.
O. T.
Dasbach
and
S.
Hougardy
, “
Does the Jones polynomial detect unknottedness?
,”
Exp. Math.
6
,
51
56
(
1997
).
14.
Wolfram Research, Inc.
, Mathematica, Version 12.1, Champaign, IL,
2020
.
You do not currently have access to this content.