This paper deals with the study of perfect fluid spacetimes. It is proven that a perfect fluid spacetime is Ricci recurrent if and only if the velocity vector field of perfect fluid spacetime is parallel and α = β. In addition, in a stiff matter perfect fluid Yang pure space with p + σ ≠ 0, the integral curves generated by the velocity vector field are geodesics. Moreover, it is shown that in a generalized Robertson–Walker perfect fluid spacetime, the Weyl tensor is divergence-free and the gradient of the potential function of the concircular vector field is pointwise collinear with the velocity vector field of perfect fluid spacetime. We also characterize the perfect fluid spacetimes whose Lorentzian metrics are Yamabe and gradient Yamabe solitons, respectively.

1.
L. J.
Alías
,
A.
Romero
, and
M.
Sánchez
,
Gen. Relativ. Gravitation
27
,
71
(
1995
).
2.
L.
Alías
,
A.
Romero
, and
M.
Sánchez
, “
Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes
,” in
Geometry and Topology of Submanifolds VII
(
World Scientific
,
1995
).
3.
B. Y.
Chen
,
Gen. Relativ. Gravitation
46
,
1833
(
2014
).
4.
M.
Sánchez
,
Gen. Relativ. Gravitation
30
,
915
932
(
1998
).
5.
K.
Arslan
,
R.
Deszcz
,
R.
Esentaş
,
M.
Hotloś
, and
C.
Murathan
,
Turk. J. Math.
38
,
353
373
(
2014
).
6.
S. K.
Chaubey
,
Y. J.
Suh
, and
U. C.
De
,
Anal. Math. Phys.
10
,
61
(
2020
).
7.
S. K.
Chaubey
,
Adv. Pure Appl. Math.
10
,
427
(
2019
).
8.
R.
Deszcz
and
M.
Kucharski
,
Tsukuba J. Math.
23
,
113
130
(
1999
).
9.
M.
Gutiérrez
and
B.
Olea
,
Differ. Geom. Appl.
27
,
146
156
(
2009
).
10.
A.
Romero
,
R. M.
Rubio
, and
J. J.
Salamanca
,
Classical Quantum Gravity
30
,
115007
(
2013
).
11.
M.
Sánchez
,
J. Geom. Phys.
31
,
1
15
(
1999
).
12.
L. C.
Shepley
and
A. H.
Taub
,
Commun. Math. Phys.
5
,
237
256
(
1967
).
13.
R.
Sharma
and
A.
Ghosh
,
J. Math. Phys.
51
,
022504
(
2010
).
14.
A. A.
Coley
,
Classical Quantum Gravity
8
,
L147
(
1991
).
15.
A. M.
Blaga
,
Bol. Soc. Mat. Mex.
26
,
1289
1299
(
2020
).
16.
S. K.
Chaubey
,
J. Geom. Phys.
162
,
104069
(
2021
).
17.
C. A.
Mantica
,
L. G.
Molinari
, and
U. C.
De
,
J. Math. Phys.
57
,
022508
(
2016
).
18.
R.
Hamilton
,
Contemp. Math.
71
,
237
261
(
1988
).
19.
R.
Sharma
,
Int. J. Geom. Methods Mod. Phys.
09
,
1220003
(
2012
).
20.
Y.
Wang
,
Bull. Belg. Math. Soc. Simon Stevin
23
,
345
355
(
2016
).
21.
Y. J.
Suh
and
U. C.
De
,
Can. Math. Bull.
62
,
653
661
(
2019
).
22.
B. Y.
Chen
and
S.
Deshmukh
,
Mediterr. J. Math.
15
,
194
(
2018
).
23.
S.
Deshmukh
and
B. Y.
Chen
,
Balkan J. Geom. Appl.
23
,
37
43
(
2018
).
24.
A. M.
Blaga
,
Rocky Mt. J. Math.
50
,
41
53
(
2020
).
25.
H.-D.
Cao
,
X.
Sun
, and
Y.
Zhang
,
Math. Res. Lett.
19
,
767
774
(
2012
).
26.
S. K.
Chaubey
and
U. C.
De
,
J. Geom. Phys.
157
,
103846
(
2020
).
27.
B.
Chow
,
Commun. Pure Appl. Math.
45
,
1003
1014
(
1992
).
28.
U. C.
De
,
S. K.
Chaubey
, and
Y. J.
Suh
,
Mediterr. J. Math.
(in press) (
2021
).
29.
S.-Y.
Hsu
,
J. Math Anal. Appl.
388
,
725
726
(
2012
).
30.
H. S.
Ruse
,
J. London Math. Soc.
s1-21
,
243
247
(
1946
).
31.
A.
Fialkow
,
Trans. Am. Math. Soc.
45
,
443
473
(
1939
).
32.
H.
Takeno
,
Tensor
20
,
167
176
(
1967
).
33.
B.-Y.
Chen
,
Bull. Korean Math. Soc.
52
,
1535
1547
(
2015
).
34.
B. Y.
Chen
and
S.
Deshmukh
,
Filomat
34
,
835
(
2020
).
35.
H.
Stephani
,
D.
Kramer
,
M.
MacCallum
,
C.
Hoenselaers
, and
E.
Herlt
,
Exact Solutions of Einsteins Field Equations
(
Cambridge University Press
,
2003
).
36.
S.
Chakraborty
,
N.
Mazumder
, and
R.
Biswas
,
Astrophys. Space Sci.
334
,
183
186
(
2011
).
37.
L.
Amendola
and
S.
Tsujikawa
,
Dark Energy: Theory and Observations
(
Cambridge University Press
,
2010
).
38.
B.
O’Neill
,
Semi-Riemannian Geometry With Applications to Relativity
(
Academic Press
,
New York
,
1983
).
39.
B. S.
Guilfoyle
and
B. C.
Nolan
,
Gen. Relativ. Gravitation
30
,
473
495
(
1998
).
40.
C. A.
Mantica
and
L. G.
Molinari
,
Int. J. Geom. Methods Mod. Phys.
14
,
1730001
(
2017
).
41.
H.
Weyl
,
Math. Z.
2
,
384
411
(
1918
).
42.
C. A.
Mantica
and
L. G.
Molinari
,
J. Math. Phys.
57
,
102502
(
2016
).
43.
K. L.
Duggal
and
R.
Sharma
,
Symmetries of Spacetimes and Riemannian Manifolds
, Mathematics and its Applications (
Kluwer Academic Press
,
Boston, London
,
1999
).
44.
U. C.
De
,
S. K.
Chaubey
, and
Y. J.
Suh
,
Int. J. Geom. Methods Mod. Phys.
17
,
2050153
(
2020
).
You do not currently have access to this content.