Metric-affine and generalized geometries are arguably the appropriate mathematical frameworks for Einstein’s theory of gravity and low-energy effective string field theory, respectively. In fact, mathematical structures in a metric-affine geometry are constructed on the tangent bundle, which is itself a Lie algebroid, whereas those in generalized geometries, which form the basis of double field theories, are constructed on Courant algebroids. Lie, Courant, and higher Courant algebroids, which are used in exceptional field theories, are all known to be special cases of pre-Leibniz algebroids. As mathematical structures on these algebroids are essential in string models, it is natural to work on a more unifying geometrical framework. Provided with some additional ingredients, the construction of such geometries can all be carried over to regular pre-Leibniz algebroids. We define below the notions of locality structures and locality projectors, which are some necessary ingredients. In terms of these structures, E-metric-connection geometries are constructed with (possibly) a minimum number of assumptions. Certain small gaps in the literature are also filled as we go along. E-Koszul connections, as a generalization of Levi–Cività connections, are defined and shown to be helpful for some results including a simple generalization of the fundamental theorem of Riemannian geometry. The existence and non-existence of E-Levi–Cività connections are discussed for certain cases. We also show that metric-affine geometries can be constructed in a unique way as special cases of E-metric-connection geometries. Some aspects of Lie and Lie-type algebroids are studied, where the latter are defined here as a generalization of Lie algebroids. Moreover, generalized geometries are shown to follow as special cases, and various properties of linear generalized-connections are proven in the present framework. Similarly, uniqueness of the locality projector in the case of exact Courant algebroids is proven, a result that explains why the curvature operator, defined with a projector in the double field theory literature, is a necessity.

1.
A.
Trautman
, “
Einstein-Cartan theory
,” in
Encyclopedia of Mathematical Physics
(
Elsevier, Oxford
,
2006
), Vol. 2, pp.
189
195
; arXiv:gr-qc/0606062.
2.
R. J.
Fernandes
, “
Lie algebroids, holonomy and characteristic classes
,”
Adv. Math.
170
,
119
179
(
2002
); arXiv:math/0007132 [math.DG].
3.
M.
Boucetta
, “
Riemannian geometry of Lie algebroids
,”
J. Egypt. Math. Soc.
19
,
57
70
(
2011
); arXiv:0806.3522 [math.DG].
4.
T.
Dereli
and
R. W.
Tucker
, “
An Einstein-Hilbert action for axi-dilaton gravity in 4-dimensions
,”
Classical Quantum Gravity
12
,
31
36
(
1995
); arXiv:gr-qc/9502018.
5.
O.
Hohm
,
C.
Hull
, and
B.
Zwiebach
, “
Generalized metric formulation of double field theory
,”
J. High Energy Phys.
2010
,
8
; arXiv:1006.4823 [hep-th].
6.
N.
Hitchin
, “
Generalized Calabi-Yau manifolds
,”
Q. J. Math.
54
,
281
308
(
2003
); arXiv:0209099 [math.DG].
7.
O.
Hohm
and
B.
Zwiebach
, “
Towards an invariant geometry of double field theory
,”
J. Math. Phys.
54
,
032303
(
2012
); arXiv:1212.1736 [hep-th].
8.
Y.
Bi
and
Y.
Sheng
, “
On higher analogues of Courant algebroids
,”
Sci. China Math.
54
,
437
447
(
2011
); arXiv:1003.1350 [math.DG].
9.
B.
Jurčo
and
J.
Vysoký
, “
Leibniz algebroids, generalized Bismut connections and Einstein-Hilbert actions
,”
J. Geom. Phys.
97
,
25
33
(
2015
); arXiv:1503.03069 [hep-th].
10.
D. S.
Berman
,
C. D. A.
Blair
,
E.
Malek
, and
M. J.
Perry
, “
The OD,D geometry of string theory
,”
Int. J. Mod. Phys. A
29
,
1450080
(
2014
); arXiv:1303.6727 [hep-th].
11.
V. A.
Penas
, “
Deformed Weitzenböck connections and double field theory
,”
Fortsch. Phys.
67
,
1800077
(
2019
); arXiv:1807.01144 [hep-th].
12.
J. A.
Schouten
,
Ricci Calculus
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1954
).
13.
C.
Fournel
,
S.
Lazzarini
, and
T.
Masson
, “
Formulation of gauge theories on transitive Lie algebroids
,”
J. Geom. Phys.
64
,
174
191
(
2013
); arXiv:1205.6725 [math-ph].
14.
J.
Grabowski
,
D.
Khudaverdyan
, and
N.
Poncin
, “
The supergeometry of Loday algebroids
,”
J. Geom. Mech.
5
,
185
221
(
2011
); arXiv:1103.5852 [math.DG].
15.
A.
Wade
, “
On some properties of Leibniz algebroids
,” in
Infinite Dimensional Lie Groups in Geometry and Representation Theory
, 1st ed., edited by
T. P.
Robart
,
J. A.
Leslie
, and
A.
Banyaga
(
World Scientific
,
Washington, DC
,
2002
), pp.
65
78
.
16.
F.
Pelletier
, “
Geometrical structures on the prolongation of a pre-Lie algebroid on fibered manifolds and application to partial Finsler geometry on foliated anchored bundle
” (unpublished) (
2014
); arXiv:1412.6742 [math.DG].
17.
D.
Baraglia
, “
Leibniz algebroids, twistings and exceptional generalized geometry
,”
J. Geom. Phys.
62
,
903
934
(
2012
); arXiv:1101.0856 [math.DG].
18.
J.
Grabowski
,
A.
Kotov
, and
N.
Poncin
, “
Geometric structures encoded in the Lie structure of an Atiyah algebroid
,”
Transform. Groups
16
,
137
160
(
2011
); arXiv:0905.1226 [math.DG].
19.
A.
Deser
and
C.
Sämann
, “
Extended Riemannian geometry I: Local double field theory
,”
Ann. Henri Poincaré
19
,
2297
2346
(
2018
); arXiv:1611.02772 [hep-th].
20.
D.
Roytenberg
, “
Courant algebroids, derived brackets and even symplectic supermanifolds
,” Ph.D. thesis,
University of California at Berkeley
,
1999
; arXiv:math/9910078 [math.DG].
21.
I.
Vaisman
, “
On the geometry of double field theory
,”
J. Math. Phys.
53
,
033509
(
2012
); arXiv:1203.0836 [math.DG].
22.
A. J.
Bruce
and
J.
Grabowski
, “
Pre-Courant algebroids
,”
J. Geom. Phys.
142
,
254
273
(
2012
); arXiv:1608.01585 [math-ph].
23.
P.
Ševera
, “
Letters to Alan Weinstein about Courant algebroids
” (unpublished) (
2017
); arXiv:1707.00265 [math.DG].
24.
I.
Vaisman
, “
Towards a double field theory on para-Hermitian manifolds
,”
J. Math. Phys.
54
,
123507
(
2013
); arXiv:1209.0152 [math.DG].
25.
M.
Gualtieri
, “
Branes on Poisson varieties,
” in , edited by
O.
Garcia-Prada
,
J. P.
Bourguignon
, and
S.
Salamon
(
Oxford University Press
,
2010
), pp.
368
394
; arXiv:0710.2719 [math.DG].
26.
M.
Garcia-Fernandez
, “
Torsion-free generalized connections and Heterotic supergravity
,”
Commun. Math. Phys.
332
,
89
115
(
2014
); arXiv:1304.4294 [math.DG].
27.
B.
Jurčo
and
J.
Vysoký
, “
Courant algebroid connections and string effective action
,” in
Proceedings of Tohoku Forum for Creativity, Special Volume: Noncommutative Geometry and Physics IV
,
2016
; arXiv:1612.01540 [math-ph].
28.
T.
Dereli
and
R. W.
Tucker
, “
A broken gauge approach to gravitational mass and charge
,”
J. High Energy Phys.
2002
,
041
; arXiv:hep-th/0112123.
29.
J. M.
Nester
and
H.
Yo
, “
Symmetric teleparallel general relativity
,”
Chin. J. Phys.
37
,
113
117
(
1999
); arXiv:gr-qc/9809049.
30.
A.
Nijenjius
and
R. W.
Richardson
, “
Deformations of Lie algebra structures
,”
J. Math. Mech.
17
,
89
105
(
1967
).
31.
M.
Grützmann
, “
H-twisted Lie algebroids
,”
J. Geom. Phys.
61
,
476
484
(
2011
); arXiv:1005.5680 [math.DG].
You do not currently have access to this content.